test_tsio.py 24.6 KB
Newer Older
1
2
3
4
5
6
7
# coding: utf-8
from pathlib import Path
from datetime import datetime
from dateutil import parser

import pandas as pd
import numpy as np
8
import pytest
9
from mock import patch
10

11
from tshistory.tsio import TimeSerie
12
13
14
15

DATADIR = Path(__file__).parent / 'data'


16
17
18
19
20
21
22
def assert_group_equals(g1, g2):
    for (n1, s1), (n2, s2) in zip(sorted(g1.items()),
                                  sorted(g2.items())):
        assert n1 == n2
        assert s1.equals(s2)


23
24
25
26
def assert_df(expected, df):
    assert expected.strip() == df.to_string().strip()


27
28
29
30
31
32
33
34
35
36
37
38
def genserie(start, freq, repeat, initval=None, tz=None, name=None):
    if initval is None:
        values = range(repeat)
    else:
        values = initval * repeat
    return pd.Series(values,
                     name=name,
                     index=pd.date_range(start=start,
                                         freq=freq,
                                         periods=repeat,
                                         tz=tz))

Aurélien Campéas's avatar
Aurélien Campéas committed
39

40
def test_changeset(engine):
41
42
43
44
    # instantiate one time serie handler object
    tso = TimeSerie()

    index = pd.date_range(start=datetime(2017, 1, 1), freq='D', periods=3)
45
    data = [1., 2., 3.]
46

47
48
    with patch('tshistory.tsio.datetime') as mock_date:
        mock_date.now.return_value = datetime(2020, 1, 1)
49
50
51
52
        with engine.connect() as cn:
            with tso.newchangeset(cn, 'babar'):
                tso.insert(cn, pd.Series(data, index=index), 'ts_values')
                tso.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
53

54
55
56
        g = tso.get_group(engine, 'ts_values')
        g2 = tso.get_group(engine, 'ts_othervalues')
        assert_group_equals(g, g2)
57

58
        with pytest.raises(AssertionError):
Aurélien Campéas's avatar
Aurélien Campéas committed
59
            tso.insert(engine, pd.Series([2, 3, 4], index=index), 'ts_values')
60

61
        with engine.connect() as cn:
62
            data.append(data.pop(0))
63
64
            with tso.newchangeset(cn, 'celeste'):
                tso.insert(cn, pd.Series(data, index=index), 'ts_values')
65
                # below should be a noop
66
                tso.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
67

68
69
70
    g = tso.get_group(engine, 'ts_values')
    assert ['ts_values'] == list(g.keys())

71
    assert_df("""
72
73
74
2017-01-01    2.0
2017-01-02    3.0
2017-01-03    1.0
75
""", tso.get(engine, 'ts_values'))
76

77
    assert_df("""
78
79
80
2017-01-01    a
2017-01-02    b
2017-01-03    c
81
""", tso.get(engine, 'ts_othervalues'))
82

83
84
85
86
87
88
89
90
91
92
93
94
    log = tso.log(engine)
    assert [
        {'author': 'babar',
         'rev': 1,
         'date': datetime(2020, 1, 1, 0, 0),
         'names': ['ts_values', 'ts_othervalues']},
        {'author': 'celeste',
         'rev': 2,
         'date': datetime(2020, 1, 1, 0, 0),
         'names': ['ts_values']}
    ] == log

95
96
97
    log = tso.log(engine, names=['ts_othervalues'])
    assert len(log) == 1
    assert log[0]['rev'] == 1
98
    assert log[0]['names'] == ['ts_values', 'ts_othervalues']
99

100
101
102
103
104
105
    log = tso.log(engine, fromrev=2)
    assert len(log) == 1

    log = tso.log(engine, torev=1)
    assert len(log) == 1

106
107
108
109
110
111
112
    info = tso.info(engine)
    assert {
        'changeset count': 2,
        'serie names': ['ts_othervalues', 'ts_values'],
        'series count': 2
    } == info

113

114
115
def test_tstamp_roundtrip(engine):
    tso = TimeSerie()
116
117
    ts = genserie(datetime(2017, 10, 28, 23),
                  'H', 4, tz='UTC')
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    ts.index = ts.index.tz_convert('Europe/Paris')

    assert_df("""
2017-10-29 01:00:00+02:00    0
2017-10-29 02:00:00+02:00    1
2017-10-29 02:00:00+01:00    2
2017-10-29 03:00:00+01:00    3
Freq: H
    """, ts)

    tso.insert(engine, ts, 'tztest', 'Babar')
    back = tso.get(engine, 'tztest')

    # though un localized we understand it's been normalized to utc
    assert_df("""
2017-10-28 23:00:00    0.0
2017-10-29 00:00:00    1.0
2017-10-29 01:00:00    2.0
2017-10-29 02:00:00    3.0
""", back)

    back.index = back.index.tz_localize('UTC')
    assert (ts.index == back.index).all()


143
def test_differential(engine):
144
145
    # instantiate one time serie handler object
    tso = TimeSerie()
146

147
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10)
148
    tso.insert(engine, ts_begin, 'ts_test', 'test')
149

150
151
152
    assert tso.exists(engine, 'ts_test')
    assert not tso.exists(engine, 'this_does_not_exist')

153
    assert_df("""
154
155
156
157
158
159
160
161
162
163
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
164
""", tso.get(engine, 'ts_test'))
165
166

    # we should detect the emission of a message
167
    tso.insert(engine, ts_begin, 'ts_test', 'babar')
168

169
    assert_df("""
170
171
172
173
174
175
176
177
178
179
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
180
""", tso.get(engine, 'ts_test'))
181
182
183
184

    ts_slight_variation = ts_begin.copy()
    ts_slight_variation.iloc[3] = 0
    ts_slight_variation.iloc[6] = 0
185
    tso.insert(engine, ts_slight_variation, 'ts_test', 'celeste')
186

187
    assert_df("""
188
189
190
191
192
193
194
195
196
197
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    0.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    0.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
198
""", tso.get(engine, 'ts_test'))
199

200
    ts_longer = genserie(datetime(2010, 1, 3), 'D', 15)
201
202
203
204
    ts_longer.iloc[1] = 2.48
    ts_longer.iloc[3] = 3.14
    ts_longer.iloc[5] = ts_begin.iloc[7]

205
    tso.insert(engine, ts_longer, 'ts_test', 'test')
206

207
    assert_df("""
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
2010-01-01     0.00
2010-01-02     1.00
2010-01-03     0.00
2010-01-04     2.48
2010-01-05     2.00
2010-01-06     3.14
2010-01-07     4.00
2010-01-08     7.00
2010-01-09     6.00
2010-01-10     7.00
2010-01-11     8.00
2010-01-12     9.00
2010-01-13    10.00
2010-01-14    11.00
2010-01-15    12.00
2010-01-16    13.00
2010-01-17    14.00
225
""", tso.get(engine, 'ts_test'))
226
227

    # start testing manual overrides
228
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 5, initval=[2])
229
    ts_begin.loc['2010-01-04'] = -1
230
    tso.insert(engine, ts_begin, 'ts_mixte', 'test')
231
232

    # -1 represents bogus upstream data
233
    assert_df("""
234
235
236
237
238
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
239
""", tso.get(engine, 'ts_mixte'))
240
241

    # refresh all the period + 1 extra data point
242
    ts_more = genserie(datetime(2010, 1, 2), 'D', 5, [2])
243
    ts_more.loc['2010-01-04'] = -1
244
    tso.insert(engine, ts_more, 'ts_mixte', 'test')
245

246
    assert_df("""
247
248
249
250
251
252
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
253
""", tso.get(engine, 'ts_mixte'))
254
255

    # just append an extra data point
256
257
    # with no intersection with the previous ts
    ts_one_more = genserie(datetime(2010, 1, 7), 'D', 1, [3])
258
    tso.insert(engine, ts_one_more, 'ts_mixte', 'test')
259

260
    assert_df("""
261
262
263
264
265
266
267
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
268
""", tso.get(engine, 'ts_mixte'))
269

270
    hist = pd.read_sql('select id, parent from timeserie.ts_test order by id',
Aurélien Campéas's avatar
Aurélien Campéas committed
271
                       engine)
272
    assert_df("""
273
274
275
276
   id  parent
0   1     NaN
1   2     1.0
2   3     2.0
277
""", hist)
278

279
    hist = pd.read_sql('select id, parent from timeserie.ts_mixte order by id',
Aurélien Campéas's avatar
Aurélien Campéas committed
280
                       engine)
281
    assert_df("""
282
283
284
285
   id  parent
0   1     NaN
1   2     1.0
2   3     2.0
286
""", hist)
287

288
    allts = pd.read_sql("select name, table_name from registry "
289
                        "where name in ('ts_test', 'ts_mixte')",
290
291
                        engine)

292
    assert_df("""
293
294
295
       name          table_name
0   ts_test   timeserie.ts_test
1  ts_mixte  timeserie.ts_mixte
296
""", allts)
297

298
    assert_df("""
299
300
301
302
303
304
305
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
306
307
""", tso.get(engine, 'ts_mixte',
             revision_date=datetime.now()))
308
309
310


def test_bad_import(engine):
311
312
313
    # instantiate one time serie handler object
    tso = TimeSerie()

314
315
316
317
318
    # the data were parsed as date by pd.read_json()
    df_result = pd.read_csv(DATADIR / 'test_data.csv')
    df_result['Gas Day'] = df_result['Gas Day'].apply(parser.parse, dayfirst=True, yearfirst=False)
    df_result.set_index('Gas Day', inplace=True)
    ts = df_result['SC']
319
320
321

    tso.insert(engine, ts, 'SND_SC', 'test')
    result = tso.get(engine, 'SND_SC')
322
    assert result.dtype == 'float64'
323
324
325

    # insertion of empty ts
    ts = pd.Series(name='truc', dtype='object')
326
327
    tso.insert(engine, ts, 'empty_ts', 'test')
    assert tso.get(engine, 'empty_ts') is None
328
329
330

    # nan in ts
    # all na
331
    ts = genserie(datetime(2010, 1, 10), 'D', 10, [np.nan], name='truc')
332
333
    tso.insert(engine, ts, 'test_nan', 'test')
    assert tso.get(engine, 'test_nan') is None
334
335
336
337
338

    # mixe na
    ts = pd.Series([np.nan] * 5 + [3] * 5,
                   index=pd.date_range(start=datetime(2010, 1, 10),
                                       freq='D', periods=10), name='truc')
339
340
    tso.insert(engine, ts, 'test_nan', 'test')
    result = tso.get(engine, 'test_nan')
341

342
343
    tso.insert(engine, ts, 'test_nan', 'test')
    result = tso.get(engine, 'test_nan')
344
    assert_df("""
345
346
347
348
349
2010-01-15    3.0
2010-01-16    3.0
2010-01-17    3.0
2010-01-18    3.0
2010-01-19    3.0
350
""", result)
351
352
353

    # get_ts with name not in database

354
    tso.get(engine, 'inexisting_name', 'test')
355
356
357


def test_revision_date(engine):
358
359
360
    # instantiate one time serie handler object
    tso = TimeSerie()

361
362
    idate1 = datetime(2015, 1, 1, 15, 43, 23)
    with tso.newchangeset(engine, 'test', _insertion_date=idate1):
363

364
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [1], name='truc')
365
366
        tso.insert(engine, ts, 'ts_through_time')
        assert idate1 == tso.latest_insertion_date(engine, 'ts_through_time')
367

368
369
    idate2 = datetime(2015, 1, 2, 15, 43, 23)
    with tso.newchangeset(engine, 'test', _insertion_date=idate2):
370

371
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [2], name='truc')
372
373
        tso.insert(engine, ts, 'ts_through_time')
        assert idate2 == tso.latest_insertion_date(engine, 'ts_through_time')
374

375
376
    idate3 = datetime(2015, 1, 3, 15, 43, 23)
    with tso.newchangeset(engine, 'test', _insertion_date=idate3):
377

378
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [3], name='truc')
379
380
        tso.insert(engine, ts, 'ts_through_time')
        assert idate3 == tso.latest_insertion_date(engine, 'ts_through_time')
381

382
    ts = tso.get(engine, 'ts_through_time')
383

384
    assert_df("""
385
386
387
388
2010-01-04    3.0
2010-01-05    3.0
2010-01-06    3.0
2010-01-07    3.0
389
""", ts)
390

391
    ts = tso.get(engine, 'ts_through_time',
Aurélien Campéas's avatar
Aurélien Campéas committed
392
                 revision_date=datetime(2015, 1, 2, 18, 43, 23))
393

394
    assert_df("""
395
396
397
398
2010-01-04    2.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    2.0
399
""", ts)
400

401
402
    ts = tso.get(engine, 'ts_through_time',
                 revision_date=datetime(2015, 1, 1, 18, 43, 23))
403

404
    assert_df("""
405
406
407
408
2010-01-04    1.0
2010-01-05    1.0
2010-01-06    1.0
2010-01-07    1.0
409
""", ts)
410

411
412
    ts = tso.get(engine, 'ts_through_time',
                 revision_date=datetime(2014, 1, 1, 18, 43, 23))
413
414
415

    assert ts is None

416
417
418

def test_snapshots(engine):
    tso = TimeSerie()
419
    tso._snapshot_interval = 4
420

421
    with engine.connect() as cn:
422
        for tscount in range(1, 11):
423
            ts = genserie(datetime(2015, 1, 1), 'D', tscount, [1])
424
            diff = tso.insert(cn, ts, 'growing', 'babar')
425
426
427
428
            assert diff.index[0] == diff.index[-1] == ts.index[-1]

    diff = tso.insert(engine, ts, 'growing', 'babar')
    assert diff is None
429

430
431
    df = pd.read_sql("select id from timeserie.growing where snapshot is not null",
                     engine)
432
    assert_df("""
433
434
   id
0   1
435
436
437
1   4
2   8
3  10
438
""", df)
439
440

    ts = tso.get(engine, 'growing')
441
    assert_df("""
442
443
444
445
446
447
448
449
450
451
2015-01-01    1.0
2015-01-02    1.0
2015-01-03    1.0
2015-01-04    1.0
2015-01-05    1.0
2015-01-06    1.0
2015-01-07    1.0
2015-01-08    1.0
2015-01-09    1.0
2015-01-10    1.0
452
""", ts)
453

454
    df = pd.read_sql("select id, diff, snapshot from timeserie.growing order by id", engine)
455
456
457
    for attr in ('diff', 'snapshot'):
        df[attr] = df[attr].apply(lambda x: 0 if x is None else len(x))

458
    assert_df("""
459
   id  diff  snapshot
Arnaud Campeas's avatar
Arnaud Campeas committed
460
461
462
463
464
465
466
467
468
469
0   1     0        32
1   2    32         0
2   3    32         0
3   4    32       125
4   5    32         0
5   6    32         0
6   7    32         0
7   8    32       249
8   9    32         0
9  10    32       311
470
""", df)
471
472
473
474
475

    table = tso._get_ts_table(engine, 'growing')
    snapid, snap = tso._find_snapshot(engine, table, ())
    assert snapid == 10
    assert (ts == snap).all()
476
477
478
479
480


def test_deletion(engine):
    tso = TimeSerie()

481
482
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_begin.iloc[-1] = np.nan
483
484
    tso.insert(engine, ts_begin, 'ts_del', 'test')

485
    ts = tso._build_snapshot_upto(engine, tso._get_ts_table(engine, 'ts_del'))
486
    assert ts.iloc[-1] == 9.0
487

488
    ts_begin.iloc[0] = np.nan
489
    ts_begin.iloc[3] = np.nan
490
491
492

    tso.insert(engine, ts_begin, 'ts_del', 'test')

493
    assert_df("""
494
495
496
497
498
499
500
2010-01-02    1.0
2010-01-03    2.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
501
502
2010-01-10    9.0
""", tso.get(engine, 'ts_del'))
503

504
505
506
507
508
    ts2 = tso.get(engine, 'ts_del',
                 # force snapshot reconstruction feature
                 revision_date=datetime(2038, 1, 1))
    assert (tso.get(engine, 'ts_del') == ts2).all()

509
510
511
512
513
    ts_begin.iloc[0] = 42
    ts_begin.iloc[3] = 23

    tso.insert(engine, ts_begin, 'ts_del', 'test')

514
    assert_df("""
515
516
517
518
519
520
521
522
523
2010-01-01    42.0
2010-01-02     1.0
2010-01-03     2.0
2010-01-04    23.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
524
525
2010-01-10     9.0
""", tso.get(engine, 'ts_del'))
526
527
528

    # now with string!

529
    ts_string = genserie(datetime(2010, 1, 1), 'D', 10, ['machin'])
530
531
532
533
534
535
    tso.insert(engine, ts_string, 'ts_string_del', 'test')

    ts_string[4] = None
    ts_string[5] = None

    tso.insert(engine, ts_string, 'ts_string_del', 'test')
536
    assert_df("""
537
538
539
540
541
542
543
544
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-07    machin
2010-01-08    machin
2010-01-09    machin
2010-01-10    machin
545
""", tso.get(engine, 'ts_string_del'))
546
547
548
549
550

    ts_string[4] = 'truc'
    ts_string[6] = 'truc'

    tso.insert(engine, ts_string, 'ts_string_del', 'test')
551
    assert_df("""
552
553
554
555
556
557
558
559
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-05      truc
2010-01-07      truc
2010-01-08    machin
2010-01-09    machin
560
561
2010-01-10    machin
""", tso.get(engine, 'ts_string_del'))
562

563
564
565
566
567
568
    ts_string[ts_string.index] = np.nan
    tso.insert(engine, ts_string, 'ts_string_del', 'test')

    erased = tso.get(engine, 'ts_string_del')
    assert len(erased) == 0

569
570
    # first insertion with only nan

571
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10, [np.nan])
572
573
574
    tso.insert(engine, ts_begin, 'ts_null', 'test')

    assert tso.get(engine, 'ts_null') is None
575

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    # exhibit issue with nans handling
    ts_repushed = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_repushed[0:3] = np.nan

    assert_df("""
2010-01-01     NaN
2010-01-02     NaN
2010-01-03     NaN
2010-01-04     3.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
2010-01-10     9.0
2010-01-11    10.0
Freq: D
""", ts_repushed)

    tso.insert(engine, ts_repushed, 'ts_repushed', 'test')
    diff = tso.insert(engine, ts_repushed, 'ts_repushed', 'test')
    assert diff is None

599
600
    # there is no difference
    assert 0 == len(tso._compute_diff(ts_repushed, ts_repushed))
601
602
603
604
605
606
607
608
609
610
611
612

    ts_add = genserie(datetime(2010, 1, 1), 'D', 15)
    ts_add.iloc[0] = np.nan
    ts_add.iloc[13:] = np.nan
    ts_add.iloc[8] = np.nan
    diff = tso._compute_diff(ts_repushed, ts_add)

    assert_df("""
2010-01-02     1.0
2010-01-03     2.0
2010-01-09     NaN
2010-01-12    11.0
613
2010-01-13    12.0""", diff.sort_index())
614
615
616
617
    # value on nan => value
    # nan on value => nan
    # nan on nan => Nothing
    # nan on nothing=> Nothing
618

Aurélien Campéas's avatar
Aurélien Campéas committed
619
    # full erasing
620
621
622
623
    # numeric
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4)
    tso.insert(engine, ts_begin, 'ts_full_del', 'test')

Aurélien Campéas's avatar
Aurélien Campéas committed
624
    ts_begin.iloc[:] = np.nan
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    tso.insert(engine, ts_begin, 'ts_full_del', 'test')

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4)
    tso.insert(engine, ts_end, 'ts_full_del', 'test')

    # string

    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
    tso.insert(engine, ts_begin, 'ts_full_del_str', 'test')

    ts_begin.iloc[:] = np.nan
    tso.insert(engine, ts_begin, 'ts_full_del_str', 'test')

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
    tso.insert(engine, ts_end, 'ts_full_del_str', 'test')
640

Aurélien Campéas's avatar
Aurélien Campéas committed
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def test_multi_index(engine):
    tso = TimeSerie()

    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 2),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 2
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 2

    multi = [
        appdate_0,
        np.array(pubdate_0),
        np.array(insertion_date_0)
    ]

    ts_multi = pd.Series(range(2), index=multi)
    ts_multi.index.rename(['b', 'c', 'a'], inplace=True)

    tso.insert(engine, ts_multi, 'ts_multi_simple', 'test')

    ts = tso.get(engine, 'ts_multi_simple')
    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
666
667
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              1.0
668
669
670
671
672
673
674
675
676
677
678
679
680
681
""", pd.DataFrame(ts))

    diff = tso.insert(engine, ts_multi, 'ts_multi_simple', 'test')
    assert diff is None

    ts_multi_2 = pd.Series([0, 2], index=multi)
    ts_multi_2.index.rename(['b', 'c', 'a'], inplace=True)

    tso.insert(engine, ts_multi_2, 'ts_multi_simple', 'test')
    ts = tso.get(engine, 'ts_multi_simple')

    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
682
683
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              2.0
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
""", pd.DataFrame(ts))

    # bigger ts
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 4
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 4

    appdate_1 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values

    pubdate_1 = [pd.datetime(2015, 1, 21, 12, 0, 0)] * 4
    insertion_date_1 = [pd.datetime(2015, 1, 21, 12, 30, 0)] * 4

    multi = [
        np.concatenate([appdate_0, appdate_1]),
        np.array(pubdate_0 + pubdate_1),
        np.array(insertion_date_0 + insertion_date_1)
    ]

    ts_multi = pd.Series(range(8), index=multi)
    ts_multi.index.rename(['a', 'c', 'b'], inplace=True)

    tso.insert(engine, ts_multi, 'ts_multi', 'test')
    ts = tso.get(engine, 'ts_multi')

    assert_df("""
                                                    ts_multi
a          b                   c                            
715
716
717
718
719
720
721
722
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       5.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       6.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       7.0
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
    """, pd.DataFrame(ts.sort_index()))
    # Note: the columnns are returned according to the alphabetic order

    appdate_2 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_2 = [pd.datetime(2015, 1, 31, 12, 0, 0)] * 4
    insertion_date_2 = [pd.datetime(2015, 1, 31, 12, 30, 0)] * 4

    multi_2 = [
        np.concatenate([appdate_1, appdate_2]),
        np.array(pubdate_1 + pubdate_2),
        np.array(insertion_date_1 + insertion_date_2)
    ]

    ts_multi_2 = pd.Series([4] * 8, index=multi_2)
    ts_multi_2.index.rename(['a', 'c', 'b'], inplace=True)

    # A second ts is inserted with some index in common with the first
    # one: appdate_1, pubdate_1,and insertion_date_1. The value is set
    # at 4, which matches the previous value of the "2015-01-01" point.

    diff = tso.insert(engine, ts_multi_2, 'ts_multi', 'test')
    assert_df("""
                                                    ts_multi
a          b                   c                            
2015-01-01 2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
        """, pd.DataFrame(diff.sort_index()))
    # the differential skips a value for "2015-01-01"
    # which does not change from the previous ts

    ts = tso.get(engine, 'ts_multi')
    assert_df("""
                                                    ts_multi
a          b                   c                            
764
765
766
767
768
769
770
771
772
773
774
775
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
776
777
778
        """, pd.DataFrame(ts.sort_index()))

    # the result ts have now 3 values for each point in 'a'
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806


def test_add_na(engine):
    tso = TimeSerie()

    # a serie of NaNs won't be insert in base
    # in case of first insertion
    ts_nan = genserie(datetime(2010, 1, 1), 'D', 5)
    ts_nan[[True] * len(ts_nan)] = np.nan

    diff = tso.insert(engine, ts_nan, 'ts_add_na', 'test')
    assert diff is None
    result = tso.get(engine, 'ts_add_na')
    assert result is None

    # in case of insertion in existing data
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 5)
    tso.insert(engine, ts_begin, 'ts_add_na', 'test')

    ts_nan = genserie(datetime(2010, 1, 6), 'D', 5)
    ts_nan[[True] * len(ts_nan)] = np.nan
    ts_nan = pd.concat([ts_begin, ts_nan])

    diff = tso.insert(engine, ts_nan, 'ts_add_na', 'test')
    assert diff is None

    result = tso.get(engine, 'ts_add_na')
    assert len(result) == 5
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836


def test_dtype_mismatch(engine):
    tso = TimeSerie()

    tso.insert(engine,
               genserie(datetime(2015, 1, 1), 'D', 11).astype('str'),
               'error1',
               'test')

    with pytest.raises(Exception) as excinfo:
        tso.insert(engine,
                   genserie(datetime(2015, 1, 1), 'D', 11),
                   'error1',
                   'test')

    assert 'Type error when inserting error1, new type is float64, type in base is object' == str(excinfo.value)

    tso.insert(engine,
               genserie(datetime(2015, 1, 1), 'D', 11),
               'error2',
               'test')

    with pytest.raises(Exception) as excinfo:
        tso.insert(engine,
                   genserie(datetime(2015, 1, 1), 'D', 11).astype('str'),
                   'error2',
                   'test')

    assert 'Type error when inserting error2, new type is object, type in base is float64' == str(excinfo.value)