test_tsio.py 41.1 KB
Newer Older
1
# coding: utf-8
2
from datetime import datetime, timedelta
3
from time import time
4
from dateutil import parser
5
import calendar
6

Aurélien Campéas's avatar
Aurélien Campéas committed
7
from pathlib2 import Path
8
9
import pandas as pd
import numpy as np
10
import pytest
11
from mock import patch
12

13
from tshistory.testutil import assert_group_equals, genserie, assert_df
14

15
DATADIR = Path(__file__).parent / 'data'
16

Aurélien Campéas's avatar
Aurélien Campéas committed
17

18
def test_changeset(engine, tsh):
19
    index = pd.date_range(start=datetime(2017, 1, 1), freq='D', periods=3)
20
    data = [1., 2., 3.]
21

22
23
    with patch('tshistory.tsio.datetime') as mock_date:
        mock_date.now.return_value = datetime(2020, 1, 1)
24
        with engine.connect() as cn:
25
            with tsh.newchangeset(cn, 'babar'):
26
                tsh.insert(cn, pd.Series(data, index=index), 'ts_values', author='WONTBEUSED')
27
                tsh.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
28

29
30
31
        # bogus author won't show up
        assert tsh.log(engine)[0]['author'] == 'babar'

32
33
        g = tsh.get_group(engine, 'ts_values')
        g2 = tsh.get_group(engine, 'ts_othervalues')
34
        assert_group_equals(g, g2)
35

36
        with pytest.raises(AssertionError):
37
            tsh.insert(engine, pd.Series([2, 3, 4], index=index), 'ts_values')
38

39
        with engine.connect() as cn:
40
            data.append(data.pop(0))
41
42
            with tsh.newchangeset(cn, 'celeste'):
                tsh.insert(cn, pd.Series(data, index=index), 'ts_values')
43
                # below should be a noop
44
                tsh.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
45

46
    g = tsh.get_group(engine, 'ts_values')
47
48
    assert ['ts_values'] == list(g.keys())

49
    assert_df("""
50
51
52
2017-01-01    2.0
2017-01-02    3.0
2017-01-03    1.0
53
""", tsh.get(engine, 'ts_values'))
54

55
    assert_df("""
56
57
58
2017-01-01    a
2017-01-02    b
2017-01-03    c
59
""", tsh.get(engine, 'ts_othervalues'))
60

61
    log = tsh.log(engine, names=['ts_values', 'ts_othervalues'])
62
63
64
65
    assert [
        {'author': 'babar',
         'rev': 1,
         'date': datetime(2020, 1, 1, 0, 0),
66
         'meta': {},
67
68
69
         'names': ['ts_values', 'ts_othervalues']},
        {'author': 'celeste',
         'rev': 2,
70
         'meta': {},
71
72
73
74
         'date': datetime(2020, 1, 1, 0, 0),
         'names': ['ts_values']}
    ] == log

75
    log = tsh.log(engine, names=['ts_othervalues'])
76
77
    assert len(log) == 1
    assert log[0]['rev'] == 1
78
    assert log[0]['names'] == ['ts_values', 'ts_othervalues']
79

80
    log = tsh.log(engine, fromrev=2)
81
82
    assert len(log) == 1

83
    log = tsh.log(engine, torev=1)
84
85
    assert len(log) == 1

86
    info = tsh.info(engine)
87
88
89
90
91
92
    assert {
        'changeset count': 2,
        'serie names': ['ts_othervalues', 'ts_values'],
        'series count': 2
    } == info

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def test_strip(engine, tsh):
    for i in range(1, 5):
        pubdate = datetime(2017, 1, i)
        ts = genserie(datetime(2017, 1, 10), 'H', 1 + i)
        with tsh.newchangeset(engine, 'babar', _insertion_date=pubdate):
            tsh.insert(engine, ts, 'xserie')
        # also insert something completely unrelated
        tsh.insert(engine, genserie(datetime(2018, 1, 1), 'D', 1 + i), 'yserie', 'celeste')

    csida = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3))
    assert csida is not None
    csidb = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3, 1), mode='before')
    csidc = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3, 1), mode='after')
    assert csidb < csida < csidc

    log = tsh.log(engine, names=['xserie', 'yserie'])
    assert [(idx, l['author']) for idx, l in enumerate(log, start=1)
    ] == [
        (1, 'babar'),
        (2, 'celeste'),
        (3, 'babar'),
        (4, 'celeste'),
        (5, 'babar'),
        (6, 'celeste'),
        (7, 'babar'),
        (8, 'celeste')
    ]

    h = tsh.get_history(engine, 'xserie')
    assert_df("""
insertion_date  value_date         
2017-01-01      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
2017-01-02      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
2017-01-03      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
                2017-01-10 03:00:00    3.0
2017-01-04      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
                2017-01-10 03:00:00    3.0
                2017-01-10 04:00:00    4.0
""", h)

    csid = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3))
    with engine.connect() as cn:
        tsh.strip(cn, 'xserie', csid)

    assert_df("""
insertion_date  value_date         
2017-01-01      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
2017-01-02      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
""", tsh.get_history(engine, 'xserie'))

    assert_df("""
2017-01-10 00:00:00    0.0
2017-01-10 01:00:00    1.0
2017-01-10 02:00:00    2.0
""", tsh.get(engine, 'xserie'))

    # internal structure is ok
    with engine.connect() as cn:
        cn.execute('set search_path to "{}.timeserie"'.format(tsh.namespace))
        df = pd.read_sql("select id, diff, snapshot from xserie order by id", cn)
        for attr in ('diff', 'snapshot'):
            df[attr] = df[attr].apply(lambda x: False if x is None else True)

    assert_df("""
id   diff  snapshot
0   1  False      True
1   2   True      True
""", df)

    log = tsh.log(engine, names=['xserie', 'yserie'])
    # 5 and 7 have disappeared
    assert [l['author'] for l in log
    ] == ['babar', 'celeste', 'babar', 'celeste', 'celeste', 'celeste']

    log = tsh.log(engine, stripped=True, names=['xserie', 'yserie'])
    assert [list(l['meta'].values())[0][:-1] + 'X' for l in log if l['meta']
    ] == [
        'got stripped from X',
        'got stripped from X'
    ]


186
def test_tstamp_roundtrip(engine, tsh):
187
188
    ts = genserie(datetime(2017, 10, 28, 23),
                  'H', 4, tz='UTC')
189
190
191
192
193
194
195
196
197
198
    ts.index = ts.index.tz_convert('Europe/Paris')

    assert_df("""
2017-10-29 01:00:00+02:00    0
2017-10-29 02:00:00+02:00    1
2017-10-29 02:00:00+01:00    2
2017-10-29 03:00:00+01:00    3
Freq: H
    """, ts)

199
200
    tsh.insert(engine, ts, 'tztest', 'Babar')
    back = tsh.get(engine, 'tztest')
201
202
203
204
205
206
207
208
209
210
211
212
213

    # though un localized we understand it's been normalized to utc
    assert_df("""
2017-10-28 23:00:00    0.0
2017-10-29 00:00:00    1.0
2017-10-29 01:00:00    2.0
2017-10-29 02:00:00    3.0
""", back)

    back.index = back.index.tz_localize('UTC')
    assert (ts.index == back.index).all()


214
def test_differential(engine, tsh):
215
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10)
216
    tsh.insert(engine, ts_begin, 'ts_test', 'test')
217

218
219
    assert tsh.exists(engine, 'ts_test')
    assert not tsh.exists(engine, 'this_does_not_exist')
220

221
    assert_df("""
222
223
224
225
226
227
228
229
230
231
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
232
""", tsh.get(engine, 'ts_test'))
233
234

    # we should detect the emission of a message
235
    tsh.insert(engine, ts_begin, 'ts_test', 'babar')
236

237
    assert_df("""
238
239
240
241
242
243
244
245
246
247
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
248
""", tsh.get(engine, 'ts_test'))
249
250
251
252

    ts_slight_variation = ts_begin.copy()
    ts_slight_variation.iloc[3] = 0
    ts_slight_variation.iloc[6] = 0
253
    tsh.insert(engine, ts_slight_variation, 'ts_test', 'celeste')
254

255
    assert_df("""
256
257
258
259
260
261
262
263
264
265
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    0.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    0.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
266
""", tsh.get(engine, 'ts_test'))
267

268
    ts_longer = genserie(datetime(2010, 1, 3), 'D', 15)
269
270
271
272
    ts_longer.iloc[1] = 2.48
    ts_longer.iloc[3] = 3.14
    ts_longer.iloc[5] = ts_begin.iloc[7]

273
    tsh.insert(engine, ts_longer, 'ts_test', 'test')
274

275
    assert_df("""
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
2010-01-01     0.00
2010-01-02     1.00
2010-01-03     0.00
2010-01-04     2.48
2010-01-05     2.00
2010-01-06     3.14
2010-01-07     4.00
2010-01-08     7.00
2010-01-09     6.00
2010-01-10     7.00
2010-01-11     8.00
2010-01-12     9.00
2010-01-13    10.00
2010-01-14    11.00
2010-01-15    12.00
2010-01-16    13.00
2010-01-17    14.00
293
""", tsh.get(engine, 'ts_test'))
294
295

    # start testing manual overrides
296
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 5, initval=[2])
297
    ts_begin.loc['2010-01-04'] = -1
298
    tsh.insert(engine, ts_begin, 'ts_mixte', 'test')
299
300

    # -1 represents bogus upstream data
301
    assert_df("""
302
303
304
305
306
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
307
""", tsh.get(engine, 'ts_mixte'))
308
309

    # refresh all the period + 1 extra data point
310
    ts_more = genserie(datetime(2010, 1, 2), 'D', 5, [2])
311
    ts_more.loc['2010-01-04'] = -1
312
    tsh.insert(engine, ts_more, 'ts_mixte', 'test')
313

314
    assert_df("""
315
316
317
318
319
320
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
321
""", tsh.get(engine, 'ts_mixte'))
322
323

    # just append an extra data point
324
325
    # with no intersection with the previous ts
    ts_one_more = genserie(datetime(2010, 1, 7), 'D', 1, [3])
326
    tsh.insert(engine, ts_one_more, 'ts_mixte', 'test')
327

328
    assert_df("""
329
330
331
332
333
334
335
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
336
""", tsh.get(engine, 'ts_mixte'))
337

338
    with engine.connect() as cn:
339
        cn.execute('set search_path to "{0}.timeserie", {0}, public'.format(tsh.namespace))
340
341
342
        hist = pd.read_sql('select id, parent from ts_test order by id',
                           cn)
        assert_df("""
343
344
345
346
   id  parent
0   1     NaN
1   2     1.0
2   3     2.0
347
""", hist)
348

349
350
351
        hist = pd.read_sql('select id, parent from ts_mixte order by id',
                           cn)
        assert_df("""
352
353
354
355
   id  parent
0   1     NaN
1   2     1.0
2   3     2.0
356
""", hist)
357

358
359
360
        allts = pd.read_sql("select name, table_name from registry "
                            "where name in ('ts_test', 'ts_mixte')",
                            cn)
361

362
363
        assert_df("""
name              table_name
364
365
366
0   ts_test   {0}.timeserie.ts_test
1  ts_mixte  {0}.timeserie.ts_mixte
""".format(tsh.namespace), allts)
367

368
        assert_df("""
369
370
371
372
373
374
375
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
376
""", tsh.get(cn, 'ts_mixte',
377
             revision_date=datetime.now()))
378
379


380
def test_bad_import(engine, tsh):
381
    # the data were parsed as date by pd.read_json()
Aurélien Campéas's avatar
Aurélien Campéas committed
382
    df_result = pd.read_csv(str(DATADIR / 'test_data.csv'))
383
384
385
    df_result['Gas Day'] = df_result['Gas Day'].apply(parser.parse, dayfirst=True, yearfirst=False)
    df_result.set_index('Gas Day', inplace=True)
    ts = df_result['SC']
386

387
388
    tsh.insert(engine, ts, 'SND_SC', 'test')
    result = tsh.get(engine, 'SND_SC')
389
    assert result.dtype == 'float64'
390
391
392

    # insertion of empty ts
    ts = pd.Series(name='truc', dtype='object')
393
394
    tsh.insert(engine, ts, 'empty_ts', 'test')
    assert tsh.get(engine, 'empty_ts') is None
395
396
397

    # nan in ts
    # all na
398
    ts = genserie(datetime(2010, 1, 10), 'D', 10, [np.nan], name='truc')
399
400
    tsh.insert(engine, ts, 'test_nan', 'test')
    assert tsh.get(engine, 'test_nan') is None
401
402
403
404
405

    # mixe na
    ts = pd.Series([np.nan] * 5 + [3] * 5,
                   index=pd.date_range(start=datetime(2010, 1, 10),
                                       freq='D', periods=10), name='truc')
406
407
    tsh.insert(engine, ts, 'test_nan', 'test')
    result = tsh.get(engine, 'test_nan')
408

409
410
    tsh.insert(engine, ts, 'test_nan', 'test')
    result = tsh.get(engine, 'test_nan')
411
    assert_df("""
412
413
414
415
416
2010-01-15    3.0
2010-01-16    3.0
2010-01-17    3.0
2010-01-18    3.0
2010-01-19    3.0
417
""", result)
418
419
420

    # get_ts with name not in database

421
    tsh.get(engine, 'inexisting_name', 'test')
422
423


424
def test_revision_date(engine, tsh):
425
426
427
428
429
430
431
432
433
434
435
    # we prepare a good joke for the end of the test
    ival = tsh._snapshot_interval
    tsh._snapshot_interval = 3

    for i in range(1, 5):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'test',
                                  _insertion_date=datetime(2016, 1, i)):
                tsh.insert(cn, genserie(datetime(2017, 1, i), 'D', 3, [i]), 'revdate')

    # end of prologue, now some real meat
436
437
438
439
440
441
442
    idate0 = datetime(2015, 1, 1, 0, 0, 0)
    with tsh.newchangeset(engine, 'test', _insertion_date=idate0):

        ts = genserie(datetime(2010, 1, 4), 'D', 4, [0], name='truc')
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate0 == tsh.latest_insertion_date(engine, 'ts_through_time')

443
    idate1 = datetime(2015, 1, 1, 15, 43, 23)
444
    with tsh.newchangeset(engine, 'test', _insertion_date=idate1):
445

446
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [1], name='truc')
447
448
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate1 == tsh.latest_insertion_date(engine, 'ts_through_time')
449

450
    idate2 = datetime(2015, 1, 2, 15, 43, 23)
451
    with tsh.newchangeset(engine, 'test', _insertion_date=idate2):
452

453
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [2], name='truc')
454
455
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate2 == tsh.latest_insertion_date(engine, 'ts_through_time')
456

457
    idate3 = datetime(2015, 1, 3, 15, 43, 23)
458
    with tsh.newchangeset(engine, 'test', _insertion_date=idate3):
459

460
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [3], name='truc')
461
462
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate3 == tsh.latest_insertion_date(engine, 'ts_through_time')
463

464
    ts = tsh.get(engine, 'ts_through_time')
465

466
    assert_df("""
467
468
469
470
2010-01-04    3.0
2010-01-05    3.0
2010-01-06    3.0
2010-01-07    3.0
471
""", ts)
472

473
    ts = tsh.get(engine, 'ts_through_time',
Aurélien Campéas's avatar
Aurélien Campéas committed
474
                 revision_date=datetime(2015, 1, 2, 18, 43, 23))
475

476
    assert_df("""
477
478
479
480
2010-01-04    2.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    2.0
481
""", ts)
482

483
    ts = tsh.get(engine, 'ts_through_time',
484
                 revision_date=datetime(2015, 1, 1, 18, 43, 23))
485

486
    assert_df("""
487
488
489
490
2010-01-04    1.0
2010-01-05    1.0
2010-01-06    1.0
2010-01-07    1.0
491
""", ts)
492

493
    ts = tsh.get(engine, 'ts_through_time',
494
                 revision_date=datetime(2014, 1, 1, 18, 43, 23))
495
496
497

    assert ts is None

498
499
500
501
502
503
504
505
506
507
    # epilogue: back to the revdate issue
    assert_df("""
2017-01-01    1.0
2017-01-02    2.0
2017-01-03    3.0
2017-01-04    4.0
2017-01-05    4.0
2017-01-06    4.0
""", tsh.get(engine, 'revdate'))

508
    oldstate = tsh.get(engine, 'revdate', revision_date=datetime(2016, 1, 2))
509
510
511
    assert_df("""
2017-01-01    1.0
2017-01-02    2.0
512
513
514
2017-01-03    2.0
2017-01-04    2.0
""", oldstate)
515
516
517

    tsh._snapshot_interval = ival

518

519
def test_snapshots(engine, tsh):
520
    baseinterval = tsh._snapshot_interval
521
    tsh._snapshot_interval = 4
522

523
    with engine.connect() as cn:
524
        for tscount in range(1, 11):
525
            ts = genserie(datetime(2015, 1, 1), 'D', tscount, [1])
526
            diff = tsh.insert(cn, ts, 'growing', 'babar')
527
528
            assert diff.index[0] == diff.index[-1] == ts.index[-1]

529
    diff = tsh.insert(engine, ts, 'growing', 'babar')
530
    assert diff is None
531

532
    with engine.connect() as cn:
533
        cn.execute('set search_path to "{}.timeserie"'.format(tsh.namespace))
534
535
536
        df = pd.read_sql("select id from growing where snapshot is not null",
                         cn)
        assert_df("""
537
538
   id
0   1
539
540
541
1   4
2   8
3  10
542
""", df)
543

544
545
        ts = tsh.get(cn, 'growing')
        assert_df("""
546
547
548
549
550
551
552
553
554
555
2015-01-01    1.0
2015-01-02    1.0
2015-01-03    1.0
2015-01-04    1.0
2015-01-05    1.0
2015-01-06    1.0
2015-01-07    1.0
2015-01-08    1.0
2015-01-09    1.0
2015-01-10    1.0
556
""", ts)
557

558
559
560
        df = pd.read_sql("select id, diff, snapshot from growing order by id", cn)
        for attr in ('diff', 'snapshot'):
            df[attr] = df[attr].apply(lambda x: 0 if x is None else len(x))
561

562
        assert_df("""
563
564
565
566
567
568
569
570
571
572
573
id  diff  snapshot
0   1     0        35
1   2    36         0
2   3    36         0
3   4    36        47
4   5    36         0
5   6    36         0
6   7    36         0
7   8    36        59
8   9    36         0
9  10    36        67
574
""", df)
575

576
577
    table = tsh._get_ts_table(engine, 'growing')
    snapid, snap = tsh._find_snapshot(engine, table, ())
578
579
    assert snapid == 10
    assert (ts == snap).all()
580
    tsh._snapshot_interval = baseinterval
581
582


583
def test_deletion(engine, tsh):
584
585
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_begin.iloc[-1] = np.nan
586
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
587

588
    ts = tsh._build_snapshot_upto(engine, tsh._get_ts_table(engine, 'ts_del'))
589
    assert ts.iloc[-1] == 9.0
590

591
    ts_begin.iloc[0] = np.nan
592
    ts_begin.iloc[3] = np.nan
593

594
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
595

596
    assert_df("""
597
598
599
600
601
602
603
2010-01-02    1.0
2010-01-03    2.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
604
2010-01-10    9.0
605
""", tsh.get(engine, 'ts_del'))
606

607
    ts2 = tsh.get(engine, 'ts_del',
608
609
                 # force snapshot reconstruction feature
                 revision_date=datetime(2038, 1, 1))
610
    assert (tsh.get(engine, 'ts_del') == ts2).all()
611

612
613
614
    ts_begin.iloc[0] = 42
    ts_begin.iloc[3] = 23

615
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
616

617
    assert_df("""
618
619
620
621
622
623
624
625
626
2010-01-01    42.0
2010-01-02     1.0
2010-01-03     2.0
2010-01-04    23.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
627
2010-01-10     9.0
628
""", tsh.get(engine, 'ts_del'))
629
630
631

    # now with string!

632
    ts_string = genserie(datetime(2010, 1, 1), 'D', 10, ['machin'])
633
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
634
635
636
637

    ts_string[4] = None
    ts_string[5] = None

638
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
639
    assert_df("""
640
641
642
643
644
645
646
647
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-07    machin
2010-01-08    machin
2010-01-09    machin
2010-01-10    machin
648
""", tsh.get(engine, 'ts_string_del'))
649
650
651
652

    ts_string[4] = 'truc'
    ts_string[6] = 'truc'

653
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
654
    assert_df("""
655
656
657
658
659
660
661
662
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-05      truc
2010-01-07      truc
2010-01-08    machin
2010-01-09    machin
663
2010-01-10    machin
664
""", tsh.get(engine, 'ts_string_del'))
665

666
    ts_string[ts_string.index] = np.nan
667
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
668

669
    erased = tsh.get(engine, 'ts_string_del')
670
671
    assert len(erased) == 0

672
673
    # first insertion with only nan

674
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10, [np.nan])
675
    tsh.insert(engine, ts_begin, 'ts_null', 'test')
676

677
    assert tsh.get(engine, 'ts_null') is None
678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    # exhibit issue with nans handling
    ts_repushed = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_repushed[0:3] = np.nan

    assert_df("""
2010-01-01     NaN
2010-01-02     NaN
2010-01-03     NaN
2010-01-04     3.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
2010-01-10     9.0
2010-01-11    10.0
Freq: D
""", ts_repushed)

698
699
    tsh.insert(engine, ts_repushed, 'ts_repushed', 'test')
    diff = tsh.insert(engine, ts_repushed, 'ts_repushed', 'test')
700
701
    assert diff is None

702
    # there is no difference
703
    assert 0 == len(tsh._compute_diff(ts_repushed, ts_repushed))
704
705
706
707
708

    ts_add = genserie(datetime(2010, 1, 1), 'D', 15)
    ts_add.iloc[0] = np.nan
    ts_add.iloc[13:] = np.nan
    ts_add.iloc[8] = np.nan
709
    diff = tsh._compute_diff(ts_repushed, ts_add)
710
711
712
713
714
715

    assert_df("""
2010-01-02     1.0
2010-01-03     2.0
2010-01-09     NaN
2010-01-12    11.0
716
2010-01-13    12.0""", diff.sort_index())
717
718
719
720
    # value on nan => value
    # nan on value => nan
    # nan on nan => Nothing
    # nan on nothing=> Nothing
721

Aurélien Campéas's avatar
Aurélien Campéas committed
722
    # full erasing
723
724
    # numeric
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4)
725
    tsh.insert(engine, ts_begin, 'ts_full_del', 'test')
726

Aurélien Campéas's avatar
Aurélien Campéas committed
727
    ts_begin.iloc[:] = np.nan
728
    tsh.insert(engine, ts_begin, 'ts_full_del', 'test')
729
730

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4)
731
    tsh.insert(engine, ts_end, 'ts_full_del', 'test')
732
733
734
735

    # string

    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
736
    tsh.insert(engine, ts_begin, 'ts_full_del_str', 'test')
737
738

    ts_begin.iloc[:] = np.nan
739
    tsh.insert(engine, ts_begin, 'ts_full_del_str', 'test')
740
741

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
742
    tsh.insert(engine, ts_end, 'ts_full_del_str', 'test')
743

Aurélien Campéas's avatar
Aurélien Campéas committed
744

745
def test_multi_index(engine, tsh):
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 2),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 2
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 2

    multi = [
        appdate_0,
        np.array(pubdate_0),
        np.array(insertion_date_0)
    ]

    ts_multi = pd.Series(range(2), index=multi)
    ts_multi.index.rename(['b', 'c', 'a'], inplace=True)

761
    tsh.insert(engine, ts_multi, 'ts_multi_simple', 'test')
762

763
    ts = tsh.get(engine, 'ts_multi_simple')
764
765
766
    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
767
768
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              1.0
769
770
""", pd.DataFrame(ts))

771
    diff = tsh.insert(engine, ts_multi, 'ts_multi_simple', 'test')
772
773
774
775
776
    assert diff is None

    ts_multi_2 = pd.Series([0, 2], index=multi)
    ts_multi_2.index.rename(['b', 'c', 'a'], inplace=True)

777
778
    tsh.insert(engine, ts_multi_2, 'ts_multi_simple', 'test')
    ts = tsh.get(engine, 'ts_multi_simple')
779
780
781
782

    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
783
784
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              2.0
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
""", pd.DataFrame(ts))

    # bigger ts
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 4
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 4

    appdate_1 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values

    pubdate_1 = [pd.datetime(2015, 1, 21, 12, 0, 0)] * 4
    insertion_date_1 = [pd.datetime(2015, 1, 21, 12, 30, 0)] * 4

    multi = [
        np.concatenate([appdate_0, appdate_1]),
        np.array(pubdate_0 + pubdate_1),
        np.array(insertion_date_0 + insertion_date_1)
    ]

    ts_multi = pd.Series(range(8), index=multi)
    ts_multi.index.rename(['a', 'c', 'b'], inplace=True)

810
811
    tsh.insert(engine, ts_multi, 'ts_multi', 'test')
    ts = tsh.get(engine, 'ts_multi')
812
813
814
815

    assert_df("""
                                                    ts_multi
a          b                   c                            
816
817
818
819
820
821
822
823
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       5.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       6.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       7.0
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    """, pd.DataFrame(ts.sort_index()))
    # Note: the columnns are returned according to the alphabetic order

    appdate_2 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_2 = [pd.datetime(2015, 1, 31, 12, 0, 0)] * 4
    insertion_date_2 = [pd.datetime(2015, 1, 31, 12, 30, 0)] * 4

    multi_2 = [
        np.concatenate([appdate_1, appdate_2]),
        np.array(pubdate_1 + pubdate_2),
        np.array(insertion_date_1 + insertion_date_2)
    ]

    ts_multi_2 = pd.Series([4] * 8, index=multi_2)
    ts_multi_2.index.rename(['a', 'c', 'b'], inplace=True)

    # A second ts is inserted with some index in common with the first
    # one: appdate_1, pubdate_1,and insertion_date_1. The value is set
    # at 4, which matches the previous value of the "2015-01-01" point.

846
    diff = tsh.insert(engine, ts_multi_2, 'ts_multi', 'test')
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    assert_df("""
                                                    ts_multi
a          b                   c                            
2015-01-01 2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
        """, pd.DataFrame(diff.sort_index()))
    # the differential skips a value for "2015-01-01"
    # which does not change from the previous ts

861
    ts = tsh.get(engine, 'ts_multi')
862
863
864
    assert_df("""
                                                    ts_multi
a          b                   c                            
865
866
867
868
869
870
871
872
873
874
875
876
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
877
878
879
        """, pd.DataFrame(ts.sort_index()))

    # the result ts have now 3 values for each point in 'a'
880
881


882
def test_get_history(engine, tsh):
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    for numserie in (1, 2, 3):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.fr',
                                  _insertion_date=datetime(2017, 2, numserie)):
                tsh.insert(cn, genserie(datetime(2017, 1, 1), 'D', numserie), 'smallserie')

    ts = tsh.get(engine, 'smallserie')
    assert_df("""
2017-01-01    0.0
2017-01-02    1.0
2017-01-03    2.0
""", ts)

    logs = tsh.log(engine, names=['smallserie'])
    assert [
        {'author': 'aurelien.campeas@pythonian.fr',
899
         'meta': {},
900
901
902
903
         'date': datetime(2017, 2, 1, 0, 0),
         'names': ['smallserie']
        },
        {'author': 'aurelien.campeas@pythonian.fr',
904
         'meta': {},
905
906
907
908
         'date': datetime(2017, 2, 2, 0, 0),
         'names': ['smallserie']
        },
        {'author': 'aurelien.campeas@pythonian.fr',
909
         'meta': {},
910
911
912
913
914
915
         'date': datetime(2017, 2, 3, 0, 0),
         'names': ['smallserie']
        }
    ] == [{k: v for k, v in log.items() if k != 'rev'}
          for log in logs]
    histts = tsh.get_history(engine, 'smallserie')
916
    assert histts.name == 'smallserie'
917
918
919
920
921
922
923
924
925
926
927

    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
                2017-01-03    2.0
""", histts)

928
929
930
931
932
933
934
935
    diffs = tsh.get_history(engine, 'smallserie', diffmode=True)
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-02    1.0
2017-02-03      2017-01-03    2.0
""", diffs)

936
    for idate in histts.index.get_level_values('insertion_date').unique():
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.f',
                                  _insertion_date=idate):
                tsh.insert(cn, histts[idate], 'smallserie2')

    # this is perfectly round-tripable
    assert (tsh.get(engine, 'smallserie2') == ts).all()
    assert (tsh.get_history(engine, 'smallserie2') == histts).all()

    # get history ranges
    tsa = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
                2017-01-03    2.0
""", tsa)

    tsb = tsh.get_history(engine, 'smallserie',
                          to_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
""", tsb)

    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2017, 2, 2),
                          to_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
""", tsc)

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2017, 2, 4),
                          to_insertion_date=datetime(2017, 2, 4))
    assert tsc is None

    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2016, 2, 1),
                          to_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
""", tsc)

    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2016, 2, 1),
                          to_insertion_date=datetime(2016, 12, 31))
    assert tsc is None

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
    # restrictions on value dates
    tsc = tsh.get_history(engine, 'smallserie',
                          from_value_date=datetime(2017, 1, 1),
                          to_value_date=datetime(2017, 1, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
""", tsc)

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
    diffs = tsh.get_history(engine, 'smallserie',
                            diffmode=True,
                            from_value_date=datetime(2017, 1, 1),
                            to_value_date=datetime(2017, 1, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-02    1.0
""", diffs)

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    tsc = tsh.get_history(engine, 'smallserie',
                          from_value_date=datetime(2017, 1, 2))
    assert_df("""
insertion_date  value_date
2017-02-02      2017-01-02    1.0
2017-02-03      2017-01-02    1.0
                2017-01-03    2.0
""", tsc)

    tsc = tsh.get_history(engine, 'smallserie',
                          to_value_date=datetime(2017, 1, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
""", tsc)

1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
def test_nr_gethistory(engine, tsh):
    s0 = pd.Series([-1, 0, 0, -1],
                   index=pd.DatetimeIndex(start=datetime(2016, 12, 29),
                                          end=datetime(2017, 1, 1),
                                          freq='D'))
    tsh.insert(engine, s0, 'foo', 'zogzog')

    s1 = pd.Series([1, 0, 0, 1],
                   index=pd.DatetimeIndex(start=datetime(2017, 1, 1),
                                          end=datetime(2017, 1, 4),
                                          freq='D'))
    idate = datetime(2016, 1, 1)
    for i in range(5):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.f',
                                  _insertion_date=idate + timedelta(days=i)):
                tsh.insert(cn, s1 * i, 'foo')

    df = tsh.get_history(engine, 'foo',
                         datetime(2016, 1, 3),
                         datetime(2016, 1, 4),
                         datetime(2017, 1, 1),
                         datetime(2017, 1, 4))

    assert_df("""
insertion_date  value_date
2016-01-03      2017-01-01    2.0
1067
1068
                2017-01-02    0.0
                2017-01-03    0.0
1069
1070
                2017-01-04    2.0
2016-01-04      2017-01-01    3.0
1071
1072
                2017-01-02    0.0
                2017-01-03    0.0
1073
1074
1075
1076
                2017-01-04    3.0
""", df)


1077
def test_add_na(engine, tsh):
1078
1079
1080
1081
1082
    # a serie of NaNs won't be insert in base
    # in case of first insertion
    ts_nan = genserie(datetime(2010, 1, 1), 'D', 5)
    ts_nan[[True] * len(ts_nan)] = np.nan

1083
    diff = tsh.insert(engine, ts_nan, 'ts_add_na', 'test')
1084
    assert diff is None
1085
    result = tsh.get(engine, 'ts_add_na')
1086
1087
1088
1089
    assert result is None

    # in case of insertion in existing data
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 5)
1090
    tsh.insert(engine, ts_begin, 'ts_add_na', 'test')
1091
1092
1093
1094
1095

    ts_nan = genserie(datetime(2010, 1, 6), 'D', 5)
    ts_nan[[True] * len(ts_nan)] = np.nan
    ts_nan = pd.concat([ts_begin, ts_nan])

1096
    diff = tsh.insert(engine, ts_nan, 'ts_add_na', 'test')
1097
1098
    assert diff is None

1099
    result = tsh.get(engine, 'ts_add_na')
1100
    assert len(result) == 5
Arnaud Campeas's avatar