README.md 6.25 KB
Newer Older
1
2
TSHISTORY
===========
Aurélien Campéas's avatar
Aurélien Campéas committed
3
4
5
6

This is a library to store/retrieve pandas timeseries to/from a
postgres database, tracking their successive versions.

7
8
[TOC]

9
# Introduction
Aurélien Campéas's avatar
Aurélien Campéas committed
10

11
## Purpose
12

13
14
15
16
17
18
19
20
21
`tshistory` is targetted at applications using time series where
[backtesting][backtesting] and [cross-validation][cross-validation]
are an essential feature.

It provides exhaustivity and efficiency of the storage, with a simple
Python api.

It can be used as a building block for machine learning, model
optimization and validation, both for inputs and outputs.
22
23


24
## Principles
Aurélien Campéas's avatar
Aurélien Campéas committed
25
26
27
28
29
30

There are many ways to represent timeseries in a relational database,
and `tshistory` provides two things:

* a base python API which abstracts away the underlying storage

31
32
* a postgres model, which emphasizes the compact storage of successive
  states of series (not unlike modern version control system)
Aurélien Campéas's avatar
Aurélien Campéas committed
33
34
35
36
37
38

The core idea of tshistory is to handle successive versions of
timeseries as they grow in time, allowing to get older states of any
series.


39
40
41
# Basic usage

## Starting with a fresh database
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

You need a postgresql database. You can create one like this:

```shell
 createdb mydb
```

Then, initialize the `tshistory` tables, like this:

```python
 tsh init-db postgresql://me:password@localhost/mydb
```

From this you're ready to go !


58
## Creating a series
Aurélien Campéas's avatar
Aurélien Campéas committed
59

60
However here's a simple example:
Aurélien Campéas's avatar
Aurélien Campéas committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74

```python
 from datetime import datetime
 from sqlalchemy import create_engine
 import pandas as pd
 from tshistory.tsio import TimeSerie

 engine = create_engine('postgres://me:password@localhost/mydb')
 tsh = TimeSerie()

 serie = pd.Series([1, 2, 3],
                  pd.date_range(start=datetime(2017, 1, 1),
                                freq='D', periods=3))
 # db insertion
Aurélien Campéas's avatar
Aurélien Campéas committed
75
 tsh.insert(engine, serie, 'my_serie', 'babar@pythonian.fr')
Aurélien Campéas's avatar
Aurélien Campéas committed
76

77
78
79
80
81
82
83
84
 # it looks like this:
 assert """
2017-01-01    1.0
2017-01-02    2.0
2017-01-03    3.0
Freq: D, dtype: float64
""".strip() == serie.to_string().strip()

Aurélien Campéas's avatar
Aurélien Campéas committed
85
86
87
88
 # db retrieval
 assert tsh.get(engine, 'my_serie') == serie
```

89
90
## Appending data

Aurélien Campéas's avatar
Aurélien Campéas committed
91
92
93
94
95
96
97
This is good. Now, let's add more:

```python
 serie = pd.Series([7, 8, 9],
                  pd.date_range(start=datetime(2017, 1, 3),
                                freq='D', periods=3))
 # db insertion
Aurélien Campéas's avatar
Aurélien Campéas committed
98
 tsh.insert(engine, serie, 'my_serie', 'babar@pythonian.fr')
Aurélien Campéas's avatar
Aurélien Campéas committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

 # db retrieval
 stored = tsh.get(engine, 'my_serie')

 assert """
2017-01-01    1
2017-01-02    2
2017-01-03    7
2017-01-04    8
2017-01-04    9
Freq: D
""".strip() == stored.to_string().strip()
```

It is important to note that the third value was replaced, and the two
last values were just appended.

116
117
## Retrieving history

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
We can access the whole history (or parts of it) in one call:

```python
 history = tsh.get_history(engine, 'my_serie')

 assert """
insertion_date              value_date
2017-11-20 15:29:35.210535  2017-01-01    1.0
                            2017-01-02    2.0
                            2017-01-03    3.0
2017-11-20 15:32:25.160935  2017-01-01    1.0
                            2017-01-02    2.0
                            2017-01-03    7.0
                            2017-01-04    8.0
                            2017-01-05    9.0
""".strip() == history.to_string().strip()
```

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Note how this shows the full serie state for each insertion date. It
is possible to show the differences only:

```python
 diffs = tsh.get_history(engine, 'my_serie', diffmode=True)

 assert """
insertion_date              value_date
2017-11-20 15:29:35.210535  2017-01-01    1.0
                            2017-01-02    2.0
                            2017-01-03    3.0
2017-11-20 15:32:25.160935  2017-01-03    7.0
                            2017-01-04    8.0
                            2017-01-05    9.0
""".strip() == diffs.to_string().strip()
```
152

153
# Command line
154
155


156
157
## Basic operations

158
159
160
161
A command line tool is provided, called `tsh`. It provides its usage
guidelines:

```shell
162
 $ tsh
163
164
165
166
167
 Usage: tsh [OPTIONS] COMMAND [ARGS]...

 Options:
   --help  Show this message and exit.

168
169
170
171
172
173
174
175
176
Commands:
  dump     dump all time series revisions in a zip file
  get      show a serie in its current state
  history  show a serie full history
  info     show global statistics of the repository
  init-db  initialize an new db.
  log      show revision history of entire repository or...
  restore  restore zip file in a freshly initialized...
  view     visualize time series through the web
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
```

`Info` provides an overview of the time series repository (number of
committed changes, number and series and their names).

```shell
 $ tsh info postgres://babar:babarpassword@dataserver:5432/banana_studies
 changeset count: 209
 series count:    144
 series names:    banana_spot_price, banana_trades, banana_turnover
```

`Log` provides the full history of editions to time series in the
repository.

```shell
 $ tsh log postgres://babar:babar@dataserver:5432/banana_studies --limit 3
 revision: 206
 author:   BABAR
 date:     2017-06-06 15:32:51.502507
 series:   banana_spot_price

 revision: 207
 author:   BABAR
 date:     2017-06-06 15:32:51.676507
 series:   banana_trades

 revision: 209
 author:   CELESTE
 date:     2017-06-06 15:32:51.977507
 series:   banana_turnover
```

All options of all commands can be obtained by using the `--help`
switch:

```shell
 $ tsh log --help
 Usage: tsh log [OPTIONS] DB_URI

 Options:
   -l, --limit TEXT
   --show-diff
   -s, --serie TEXT
   --from-rev TEXT
   --to-rev TEXT
   --help            Show this message and exit.
```
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245


## Extensions

It is possible to augment the `tsh` command with new subcommands (or
augment, modify existing commands).

Any program doing so must define a new command and declare a setup
tools entry point named `tshistory:subcommand` as in e.g.:

```python

    entry_points={'tshistory.subcommands': [
        'view=tsview.command:view'
    ]}
```

For instance, the [tsview][tsview] python package provides such a
`view` subcommand for generic time series visualisation.

[tsview]: https://bitbucket.org/pythonian/tsview
246
[backtesting]: https://en.wikipedia.org/wiki/Backtesting
247
[cross-validation]: https://en.wikipedia.org/wiki/Cross-validation_(statistics)