test_tsio.py 47.6 KB
Newer Older
1
# coding: utf-8
2
from datetime import datetime, timedelta
3
from time import time
4
from dateutil import parser
5
import calendar
6

Aurélien Campéas's avatar
Aurélien Campéas committed
7
from pathlib2 import Path
8
9
import pandas as pd
import numpy as np
10
import pytest
11
from mock import patch
12

13
from tshistory.testutil import assert_group_equals, genserie, assert_df
14

15
DATADIR = Path(__file__).parent / 'data'
16

Aurélien Campéas's avatar
Aurélien Campéas committed
17

18
def test_changeset(engine, tsh):
19
    index = pd.date_range(start=datetime(2017, 1, 1), freq='D', periods=3)
20
    data = [1., 2., 3.]
21

22
23
    with patch('tshistory.tsio.datetime') as mock_date:
        mock_date.now.return_value = datetime(2020, 1, 1)
24
        with engine.connect() as cn:
25
            with tsh.newchangeset(cn, 'babar'):
26
                tsh.insert(cn, pd.Series(data, index=index), 'ts_values', author='WONTBEUSED')
27
                tsh.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
28

29
30
31
        # bogus author won't show up
        assert tsh.log(engine)[0]['author'] == 'babar'

32
33
        g = tsh.get_group(engine, 'ts_values')
        g2 = tsh.get_group(engine, 'ts_othervalues')
34
        assert_group_equals(g, g2)
35

36
        with pytest.raises(AssertionError):
37
            tsh.insert(engine, pd.Series([2, 3, 4], index=index), 'ts_values')
38

39
        with engine.connect() as cn:
40
            data.append(data.pop(0))
41
42
            with tsh.newchangeset(cn, 'celeste'):
                tsh.insert(cn, pd.Series(data, index=index), 'ts_values')
43
                # below should be a noop
44
                tsh.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
45

46
    g = tsh.get_group(engine, 'ts_values')
47
48
    assert ['ts_values'] == list(g.keys())

49
    assert_df("""
50
51
52
2017-01-01    2.0
2017-01-02    3.0
2017-01-03    1.0
53
""", tsh.get(engine, 'ts_values'))
54

55
    assert_df("""
56
57
58
2017-01-01    a
2017-01-02    b
2017-01-03    c
59
""", tsh.get(engine, 'ts_othervalues'))
60

61
    log = tsh.log(engine, names=['ts_values', 'ts_othervalues'])
62
63
64
65
    assert [
        {'author': 'babar',
         'rev': 1,
         'date': datetime(2020, 1, 1, 0, 0),
66
         'meta': {},
67
68
69
         'names': ['ts_values', 'ts_othervalues']},
        {'author': 'celeste',
         'rev': 2,
70
         'meta': {},
71
72
73
74
         'date': datetime(2020, 1, 1, 0, 0),
         'names': ['ts_values']}
    ] == log

75
    log = tsh.log(engine, names=['ts_othervalues'])
76
77
    assert len(log) == 1
    assert log[0]['rev'] == 1
78
    assert log[0]['names'] == ['ts_values', 'ts_othervalues']
79

80
    log = tsh.log(engine, fromrev=2)
81
82
    assert len(log) == 1

83
    log = tsh.log(engine, torev=1)
84
85
    assert len(log) == 1

86
    info = tsh.info(engine)
87
88
89
90
91
92
    assert {
        'changeset count': 2,
        'serie names': ['ts_othervalues', 'ts_values'],
        'series count': 2
    } == info

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def test_strip(engine, tsh):
    for i in range(1, 5):
        pubdate = datetime(2017, 1, i)
        ts = genserie(datetime(2017, 1, 10), 'H', 1 + i)
        with tsh.newchangeset(engine, 'babar', _insertion_date=pubdate):
            tsh.insert(engine, ts, 'xserie')
        # also insert something completely unrelated
        tsh.insert(engine, genserie(datetime(2018, 1, 1), 'D', 1 + i), 'yserie', 'celeste')

    csida = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3))
    assert csida is not None
    csidb = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3, 1), mode='before')
    csidc = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3, 1), mode='after')
    assert csidb < csida < csidc

    log = tsh.log(engine, names=['xserie', 'yserie'])
    assert [(idx, l['author']) for idx, l in enumerate(log, start=1)
    ] == [
        (1, 'babar'),
        (2, 'celeste'),
        (3, 'babar'),
        (4, 'celeste'),
        (5, 'babar'),
        (6, 'celeste'),
        (7, 'babar'),
        (8, 'celeste')
    ]

    h = tsh.get_history(engine, 'xserie')
    assert_df("""
insertion_date  value_date         
2017-01-01      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
2017-01-02      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
2017-01-03      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
                2017-01-10 03:00:00    3.0
2017-01-04      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
                2017-01-10 03:00:00    3.0
                2017-01-10 04:00:00    4.0
""", h)

    csid = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3))
    with engine.connect() as cn:
        tsh.strip(cn, 'xserie', csid)

    assert_df("""
insertion_date  value_date         
2017-01-01      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
2017-01-02      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
""", tsh.get_history(engine, 'xserie'))

    assert_df("""
2017-01-10 00:00:00    0.0
2017-01-10 01:00:00    1.0
2017-01-10 02:00:00    2.0
""", tsh.get(engine, 'xserie'))

    # internal structure is ok
    with engine.connect() as cn:
        cn.execute('set search_path to "{}.timeserie"'.format(tsh.namespace))
        df = pd.read_sql("select id, diff, snapshot from xserie order by id", cn)
        for attr in ('diff', 'snapshot'):
            df[attr] = df[attr].apply(lambda x: False if x is None else True)

    assert_df("""
id   diff  snapshot
0   1  False      True
1   2   True      True
""", df)

    log = tsh.log(engine, names=['xserie', 'yserie'])
    # 5 and 7 have disappeared
    assert [l['author'] for l in log
    ] == ['babar', 'celeste', 'babar', 'celeste', 'celeste', 'celeste']

    log = tsh.log(engine, stripped=True, names=['xserie', 'yserie'])
    assert [list(l['meta'].values())[0][:-1] + 'X' for l in log if l['meta']
    ] == [
        'got stripped from X',
        'got stripped from X'
    ]


186
def test_tstamp_roundtrip(engine, tsh):
187
188
    ts = genserie(datetime(2017, 10, 28, 23),
                  'H', 4, tz='UTC')
189
190
191
192
193
194
195
196
197
198
    ts.index = ts.index.tz_convert('Europe/Paris')

    assert_df("""
2017-10-29 01:00:00+02:00    0
2017-10-29 02:00:00+02:00    1
2017-10-29 02:00:00+01:00    2
2017-10-29 03:00:00+01:00    3
Freq: H
    """, ts)

199
200
    tsh.insert(engine, ts, 'tztest', 'Babar')
    back = tsh.get(engine, 'tztest')
201
202
203

    # though un localized we understand it's been normalized to utc
    assert_df("""
204
205
206
207
2017-10-28 23:00:00+00:00    0.0
2017-10-29 00:00:00+00:00    1.0
2017-10-29 01:00:00+00:00    2.0
2017-10-29 02:00:00+00:00    3.0
208
209
210
""", back)

    assert (ts.index == back.index).all()
211
    assert str(back.index.dtype) == 'datetime64[ns, UTC]'
212
213


214
215
def test_multi_index_aware(engine, tsh):
    ts_multi_aware = genserie(
216
217
218
        start=pd.Timestamp(
            2017, 10, 28, 23
        ).tz_localize('UTC').tz_convert('Europe/Paris'),
219
220
        freq=['15T', '30T', '60T'],
        repeat=10,
221
        tz='Europe/Paris',
222
223
224
225
        name='ts_multi_aware',
    )
    ts_multi_aware.index.rename(['a', 'b', 'c'], inplace=True)

226
227
228
229
230
231
232
233
234
235
236
237
238
239
    assert_df("""
a                          b                          c                        
2017-10-29 01:00:00+02:00  2017-10-29 01:00:00+02:00  2017-10-29 01:00:00+02:00    0
2017-10-29 01:15:00+02:00  2017-10-29 01:30:00+02:00  2017-10-29 02:00:00+02:00    1
2017-10-29 01:30:00+02:00  2017-10-29 02:00:00+02:00  2017-10-29 02:00:00+01:00    2
2017-10-29 01:45:00+02:00  2017-10-29 02:30:00+02:00  2017-10-29 03:00:00+01:00    3
2017-10-29 02:00:00+02:00  2017-10-29 02:00:00+01:00  2017-10-29 04:00:00+01:00    4
2017-10-29 02:15:00+02:00  2017-10-29 02:30:00+01:00  2017-10-29 05:00:00+01:00    5
2017-10-29 02:30:00+02:00  2017-10-29 03:00:00+01:00  2017-10-29 06:00:00+01:00    6
2017-10-29 02:45:00+02:00  2017-10-29 03:30:00+01:00  2017-10-29 07:00:00+01:00    7
2017-10-29 02:00:00+01:00  2017-10-29 04:00:00+01:00  2017-10-29 08:00:00+01:00    8
2017-10-29 02:15:00+01:00  2017-10-29 04:30:00+01:00  2017-10-29 09:00:00+01:00    9
""", ts_multi_aware)

240
241
242
243
    tsh.insert(engine, ts_multi_aware, 'ts_multi_aware', 'test')
    ts_aware = tsh.get(engine, 'ts_multi_aware')

    assert_df("""
244
ts_multi_aware
245
a                         b                         c                                        
246
247
248
249
250
251
252
253
254
255
2017-10-28 23:00:00+00:00 2017-10-28 23:00:00+00:00 2017-10-28 23:00:00+00:00             0.0
2017-10-28 23:15:00+00:00 2017-10-28 23:30:00+00:00 2017-10-29 00:00:00+00:00             1.0
2017-10-28 23:30:00+00:00 2017-10-29 00:00:00+00:00 2017-10-29 01:00:00+00:00             2.0
2017-10-28 23:45:00+00:00 2017-10-29 00:30:00+00:00 2017-10-29 02:00:00+00:00             3.0
2017-10-29 00:00:00+00:00 2017-10-29 01:00:00+00:00 2017-10-29 03:00:00+00:00             4.0
2017-10-29 00:15:00+00:00 2017-10-29 01:30:00+00:00 2017-10-29 04:00:00+00:00             5.0
2017-10-29 00:30:00+00:00 2017-10-29 02:00:00+00:00 2017-10-29 05:00:00+00:00             6.0
2017-10-29 00:45:00+00:00 2017-10-29 02:30:00+00:00 2017-10-29 06:00:00+00:00             7.0
2017-10-29 01:00:00+00:00 2017-10-29 03:00:00+00:00 2017-10-29 07:00:00+00:00             8.0
2017-10-29 01:15:00+00:00 2017-10-29 03:30:00+00:00 2017-10-29 08:00:00+00:00             9.0
256
257
258
    """, pd.DataFrame(ts_aware.sort_index()))
    # Note: the columnns are returned according to the alphabetic order

259
260
261
262
263
264
265
266
267
268
269
270
    ts = tsh.get(engine, 'ts_multi_aware',
                 from_value_date=pd.Timestamp(2017, 10, 29, 0).tz_localize('UTC'),
                 to_value_date=pd.Timestamp(2017, 10, 29, 1).tz_localize('UTC'))
    assert_df("""
a                          b                          c                        
2017-10-29 00:00:00+00:00  2017-10-29 01:00:00+00:00  2017-10-29 03:00:00+00:00    4.0
2017-10-29 00:15:00+00:00  2017-10-29 01:30:00+00:00  2017-10-29 04:00:00+00:00    5.0
2017-10-29 00:30:00+00:00  2017-10-29 02:00:00+00:00  2017-10-29 05:00:00+00:00    6.0
2017-10-29 00:45:00+00:00  2017-10-29 02:30:00+00:00  2017-10-29 06:00:00+00:00    7.0
2017-10-29 01:00:00+00:00  2017-10-29 03:00:00+00:00  2017-10-29 07:00:00+00:00    8.0
    """, ts)

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    ts = genserie(datetime(2010, 1, 1), 'D', 10)
    with pytest.raises(Exception) as err:
        tsh.insert(engine, ts, 'ts_multi_aware', 'test')
    assert err.value.args[0] == 'Incompatible index types'

    ts = genserie(
        start=pd.Timestamp(
            2017, 10, 28, 23
        ).tz_localize('UTC').tz_convert('Europe/Paris'),
        freq=['15T', '30T'],
        repeat=10,
        tz='Europe/Paris',
        name='ts_multi_aware',
    )
    ts.index.rename(['a', 'b'], inplace=True)

    with pytest.raises(Exception) as err:
        tsh.insert(engine, ts, 'ts_multi_aware', 'test')
    assert err.value.args[0] == "Incompatible multi indexes: ['a', 'b', 'c'] vs ['a', 'b']"

291

292
def test_differential(engine, tsh):
293
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10)
294
    tsh.insert(engine, ts_begin, 'ts_test', 'test')
295

296
297
    assert tsh.exists(engine, 'ts_test')
    assert not tsh.exists(engine, 'this_does_not_exist')
298

299
    assert_df("""
300
301
302
303
304
305
306
307
308
309
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
310
""", tsh.get(engine, 'ts_test'))
311
312

    # we should detect the emission of a message
313
    tsh.insert(engine, ts_begin, 'ts_test', 'babar')
314

315
    assert_df("""
316
317
318
319
320
321
322
323
324
325
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
326
""", tsh.get(engine, 'ts_test'))
327
328
329
330

    ts_slight_variation = ts_begin.copy()
    ts_slight_variation.iloc[3] = 0
    ts_slight_variation.iloc[6] = 0
331
    tsh.insert(engine, ts_slight_variation, 'ts_test', 'celeste')
332

333
    assert_df("""
334
335
336
337
338
339
340
341
342
343
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    0.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    0.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
344
""", tsh.get(engine, 'ts_test'))
345

346
    ts_longer = genserie(datetime(2010, 1, 3), 'D', 15)
347
348
349
350
    ts_longer.iloc[1] = 2.48
    ts_longer.iloc[3] = 3.14
    ts_longer.iloc[5] = ts_begin.iloc[7]

351
    tsh.insert(engine, ts_longer, 'ts_test', 'test')
352

353
    assert_df("""
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
2010-01-01     0.00
2010-01-02     1.00
2010-01-03     0.00
2010-01-04     2.48
2010-01-05     2.00
2010-01-06     3.14
2010-01-07     4.00
2010-01-08     7.00
2010-01-09     6.00
2010-01-10     7.00
2010-01-11     8.00
2010-01-12     9.00
2010-01-13    10.00
2010-01-14    11.00
2010-01-15    12.00
2010-01-16    13.00
2010-01-17    14.00
371
""", tsh.get(engine, 'ts_test'))
372
373

    # start testing manual overrides
374
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 5, initval=[2])
375
    ts_begin.loc['2010-01-04'] = -1
376
    tsh.insert(engine, ts_begin, 'ts_mixte', 'test')
377
378

    # -1 represents bogus upstream data
379
    assert_df("""
380
381
382
383
384
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
385
""", tsh.get(engine, 'ts_mixte'))
386
387

    # refresh all the period + 1 extra data point
388
    ts_more = genserie(datetime(2010, 1, 2), 'D', 5, [2])
389
    ts_more.loc['2010-01-04'] = -1
390
    tsh.insert(engine, ts_more, 'ts_mixte', 'test')
391

392
    assert_df("""
393
394
395
396
397
398
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
399
""", tsh.get(engine, 'ts_mixte'))
400
401

    # just append an extra data point
402
403
    # with no intersection with the previous ts
    ts_one_more = genserie(datetime(2010, 1, 7), 'D', 1, [3])
404
    tsh.insert(engine, ts_one_more, 'ts_mixte', 'test')
405

406
    assert_df("""
407
408
409
410
411
412
413
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
414
""", tsh.get(engine, 'ts_mixte'))
415

416
    with engine.connect() as cn:
417
        cn.execute('set search_path to "{0}.timeserie", {0}, public'.format(tsh.namespace))
418
419
420
        allts = pd.read_sql("select name, table_name from registry "
                            "where name in ('ts_test', 'ts_mixte')",
                            cn)
421

422
423
        assert_df("""
name              table_name
424
425
426
0   ts_test   {0}.timeserie.ts_test
1  ts_mixte  {0}.timeserie.ts_mixte
""".format(tsh.namespace), allts)
427

428
        assert_df("""
429
430
431
432
433
434
435
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
436
""", tsh.get(cn, 'ts_mixte',
437
             revision_date=datetime.now()))
438
439


440
def test_bad_import(engine, tsh):
441
    # the data were parsed as date by pd.read_json()
Aurélien Campéas's avatar
Aurélien Campéas committed
442
    df_result = pd.read_csv(str(DATADIR / 'test_data.csv'))
443
444
445
    df_result['Gas Day'] = df_result['Gas Day'].apply(parser.parse, dayfirst=True, yearfirst=False)
    df_result.set_index('Gas Day', inplace=True)
    ts = df_result['SC']
446

447
448
    tsh.insert(engine, ts, 'SND_SC', 'test')
    result = tsh.get(engine, 'SND_SC')
449
    assert result.dtype == 'float64'
450
451
452

    # insertion of empty ts
    ts = pd.Series(name='truc', dtype='object')
453
454
    tsh.insert(engine, ts, 'empty_ts', 'test')
    assert tsh.get(engine, 'empty_ts') is None
455
456
457

    # nan in ts
    # all na
458
    ts = genserie(datetime(2010, 1, 10), 'D', 10, [np.nan], name='truc')
459
460
    tsh.insert(engine, ts, 'test_nan', 'test')
    assert tsh.get(engine, 'test_nan') is None
461
462
463
464
465

    # mixe na
    ts = pd.Series([np.nan] * 5 + [3] * 5,
                   index=pd.date_range(start=datetime(2010, 1, 10),
                                       freq='D', periods=10), name='truc')
466
467
    tsh.insert(engine, ts, 'test_nan', 'test')
    result = tsh.get(engine, 'test_nan')
468

469
470
    tsh.insert(engine, ts, 'test_nan', 'test')
    result = tsh.get(engine, 'test_nan')
471
    assert_df("""
472
473
474
475
476
2010-01-15    3.0
2010-01-16    3.0
2010-01-17    3.0
2010-01-18    3.0
2010-01-19    3.0
477
""", result)
478
479
480

    # get_ts with name not in database

481
    tsh.get(engine, 'inexisting_name', 'test')
482
483


484
def test_revision_date(engine, tsh):
485
486
487
488
489
490
491
492
493
494
495
    # we prepare a good joke for the end of the test
    ival = tsh._snapshot_interval
    tsh._snapshot_interval = 3

    for i in range(1, 5):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'test',
                                  _insertion_date=datetime(2016, 1, i)):
                tsh.insert(cn, genserie(datetime(2017, 1, i), 'D', 3, [i]), 'revdate')

    # end of prologue, now some real meat
496
497
498
499
500
501
502
    idate0 = datetime(2015, 1, 1, 0, 0, 0)
    with tsh.newchangeset(engine, 'test', _insertion_date=idate0):

        ts = genserie(datetime(2010, 1, 4), 'D', 4, [0], name='truc')
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate0 == tsh.latest_insertion_date(engine, 'ts_through_time')

503
    idate1 = datetime(2015, 1, 1, 15, 43, 23)
504
    with tsh.newchangeset(engine, 'test', _insertion_date=idate1):
505

506
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [1], name='truc')
507
508
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate1 == tsh.latest_insertion_date(engine, 'ts_through_time')
509

510
    idate2 = datetime(2015, 1, 2, 15, 43, 23)
511
    with tsh.newchangeset(engine, 'test', _insertion_date=idate2):
512

513
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [2], name='truc')
514
515
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate2 == tsh.latest_insertion_date(engine, 'ts_through_time')
516

517
    idate3 = datetime(2015, 1, 3, 15, 43, 23)
518
    with tsh.newchangeset(engine, 'test', _insertion_date=idate3):
519

520
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [3], name='truc')
521
522
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate3 == tsh.latest_insertion_date(engine, 'ts_through_time')
523

524
    ts = tsh.get(engine, 'ts_through_time')
525

526
    assert_df("""
527
528
529
530
2010-01-04    3.0
2010-01-05    3.0
2010-01-06    3.0
2010-01-07    3.0
531
""", ts)
532

533
    ts = tsh.get(engine, 'ts_through_time',
Aurélien Campéas's avatar
Aurélien Campéas committed
534
                 revision_date=datetime(2015, 1, 2, 18, 43, 23))
535

536
    assert_df("""
537
538
539
540
2010-01-04    2.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    2.0
541
""", ts)
542

543
    ts = tsh.get(engine, 'ts_through_time',
544
                 revision_date=datetime(2015, 1, 1, 18, 43, 23))
545

546
    assert_df("""
547
548
549
550
2010-01-04    1.0
2010-01-05    1.0
2010-01-06    1.0
2010-01-07    1.0
551
""", ts)
552

553
    ts = tsh.get(engine, 'ts_through_time',
554
                 revision_date=datetime(2014, 1, 1, 18, 43, 23))
555
556
557

    assert ts is None

558
559
560
561
562
563
564
565
566
567
    # epilogue: back to the revdate issue
    assert_df("""
2017-01-01    1.0
2017-01-02    2.0
2017-01-03    3.0
2017-01-04    4.0
2017-01-05    4.0
2017-01-06    4.0
""", tsh.get(engine, 'revdate'))

568
    oldstate = tsh.get(engine, 'revdate', revision_date=datetime(2016, 1, 2))
569
570
571
    assert_df("""
2017-01-01    1.0
2017-01-02    2.0
572
573
574
2017-01-03    2.0
2017-01-04    2.0
""", oldstate)
575
576
577

    tsh._snapshot_interval = ival

578

579
def test_snapshots(engine, tsh):
580
    baseinterval = tsh._snapshot_interval
581
    tsh._snapshot_interval = 4
582

583
    with engine.connect() as cn:
584
        for tscount in range(1, 11):
585
            ts = genserie(datetime(2015, 1, 1), 'D', tscount, [1])
586
            diff = tsh.insert(cn, ts, 'growing', 'babar')
587
588
            assert diff.index[0] == diff.index[-1] == ts.index[-1]

589
    diff = tsh.insert(engine, ts, 'growing', 'babar')
590
    assert diff is None
591

592
    with engine.connect() as cn:
593
        cn.execute('set search_path to "{}.timeserie"'.format(tsh.namespace))
594
595
596
        df = pd.read_sql("select id from growing where snapshot is not null",
                         cn)
        assert_df("""
597
598
   id
0   1
599
600
601
1   4
2   8
3  10
602
""", df)
603

604
605
        ts = tsh.get(cn, 'growing')
        assert_df("""
606
607
608
609
610
611
612
613
614
615
2015-01-01    1.0
2015-01-02    1.0
2015-01-03    1.0
2015-01-04    1.0
2015-01-05    1.0
2015-01-06    1.0
2015-01-07    1.0
2015-01-08    1.0
2015-01-09    1.0
2015-01-10    1.0
616
""", ts)
617

618
619
620
        df = pd.read_sql("select id, diff, snapshot from growing order by id", cn)
        for attr in ('diff', 'snapshot'):
            df[attr] = df[attr].apply(lambda x: 0 if x is None else len(x))
621

622
        assert_df("""
623
624
625
626
627
628
629
630
631
632
633
id  diff  snapshot
0   1     0        35
1   2    36         0
2   3    36         0
3   4    36        47
4   5    36         0
5   6    36         0
6   7    36         0
7   8    36        59
8   9    36         0
9  10    36        67
634
""", df)
635

636
637
    table = tsh._get_ts_table(engine, 'growing')
    snapid, snap = tsh._find_snapshot(engine, table, ())
638
639
    assert snapid == 10
    assert (ts == snap).all()
640
    tsh._snapshot_interval = baseinterval
641
642


643
def test_deletion(engine, tsh):
644
645
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_begin.iloc[-1] = np.nan
646
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
647

648
    ts = tsh._build_snapshot_upto(engine, tsh._get_ts_table(engine, 'ts_del'))
649
    assert ts.iloc[-1] == 9.0
650

651
    ts_begin.iloc[0] = np.nan
652
    ts_begin.iloc[3] = np.nan
653

654
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
655

656
    assert_df("""
657
658
659
660
661
662
663
2010-01-02    1.0
2010-01-03    2.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
664
2010-01-10    9.0
665
""", tsh.get(engine, 'ts_del'))
666

667
    ts2 = tsh.get(engine, 'ts_del',
668
669
                 # force snapshot reconstruction feature
                 revision_date=datetime(2038, 1, 1))
670
    assert (tsh.get(engine, 'ts_del') == ts2).all()
671

672
673
674
    ts_begin.iloc[0] = 42
    ts_begin.iloc[3] = 23

675
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
676

677
    assert_df("""
678
679
680
681
682
683
684
685
686
2010-01-01    42.0
2010-01-02     1.0
2010-01-03     2.0
2010-01-04    23.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
687
2010-01-10     9.0
688
""", tsh.get(engine, 'ts_del'))
689
690
691

    # now with string!

692
    ts_string = genserie(datetime(2010, 1, 1), 'D', 10, ['machin'])
693
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
694
695
696
697

    ts_string[4] = None
    ts_string[5] = None

698
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
699
    assert_df("""
700
701
702
703
704
705
706
707
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-07    machin
2010-01-08    machin
2010-01-09    machin
2010-01-10    machin
708
""", tsh.get(engine, 'ts_string_del'))
709
710
711
712

    ts_string[4] = 'truc'
    ts_string[6] = 'truc'

713
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
714
    assert_df("""
715
716
717
718
719
720
721
722
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-05      truc
2010-01-07      truc
2010-01-08    machin
2010-01-09    machin
723
2010-01-10    machin
724
""", tsh.get(engine, 'ts_string_del'))
725

726
    ts_string[ts_string.index] = np.nan
727
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
728

729
    erased = tsh.get(engine, 'ts_string_del')
730
731
    assert len(erased) == 0

732
733
    # first insertion with only nan

734
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10, [np.nan])
735
    tsh.insert(engine, ts_begin, 'ts_null', 'test')
736

737
    assert tsh.get(engine, 'ts_null') is None
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    # exhibit issue with nans handling
    ts_repushed = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_repushed[0:3] = np.nan

    assert_df("""
2010-01-01     NaN
2010-01-02     NaN
2010-01-03     NaN
2010-01-04     3.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
2010-01-10     9.0
2010-01-11    10.0
Freq: D
""", ts_repushed)

758
759
    tsh.insert(engine, ts_repushed, 'ts_repushed', 'test')
    diff = tsh.insert(engine, ts_repushed, 'ts_repushed', 'test')
760
761
    assert diff is None

762
    # there is no difference
763
    assert 0 == len(tsh.diff(ts_repushed, ts_repushed))
764
765
766
767
768

    ts_add = genserie(datetime(2010, 1, 1), 'D', 15)
    ts_add.iloc[0] = np.nan
    ts_add.iloc[13:] = np.nan
    ts_add.iloc[8] = np.nan
769
    diff = tsh.diff(ts_repushed, ts_add)
770
771
772
773
774
775

    assert_df("""
2010-01-02     1.0
2010-01-03     2.0
2010-01-09     NaN
2010-01-12    11.0
776
2010-01-13    12.0""", diff.sort_index())
777
778
779
780
    # value on nan => value
    # nan on value => nan
    # nan on nan => Nothing
    # nan on nothing=> Nothing
781

Aurélien Campéas's avatar
Aurélien Campéas committed
782
    # full erasing
783
784
    # numeric
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4)
785
    tsh.insert(engine, ts_begin, 'ts_full_del', 'test')
786

Aurélien Campéas's avatar
Aurélien Campéas committed
787
    ts_begin.iloc[:] = np.nan
788
    tsh.insert(engine, ts_begin, 'ts_full_del', 'test')
789
790

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4)
791
    tsh.insert(engine, ts_end, 'ts_full_del', 'test')
792
793
794
795

    # string

    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
796
    tsh.insert(engine, ts_begin, 'ts_full_del_str', 'test')
797
798

    ts_begin.iloc[:] = np.nan
799
    tsh.insert(engine, ts_begin, 'ts_full_del_str', 'test')
800
801

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
802
    tsh.insert(engine, ts_end, 'ts_full_del_str', 'test')
803

Aurélien Campéas's avatar
Aurélien Campéas committed
804

805
def test_multi_index(engine, tsh):
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 2),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 2
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 2

    multi = [
        appdate_0,
        np.array(pubdate_0),
        np.array(insertion_date_0)
    ]

    ts_multi = pd.Series(range(2), index=multi)
    ts_multi.index.rename(['b', 'c', 'a'], inplace=True)

821
    tsh.insert(engine, ts_multi, 'ts_multi_simple', 'test')
822

823
    ts = tsh.get(engine, 'ts_multi_simple')
824
825
826
    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
827
828
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              1.0
829
830
""", pd.DataFrame(ts))

831
    diff = tsh.insert(engine, ts_multi, 'ts_multi_simple', 'test')
832
833
834
835
836
    assert diff is None

    ts_multi_2 = pd.Series([0, 2], index=multi)
    ts_multi_2.index.rename(['b', 'c', 'a'], inplace=True)

837
838
    tsh.insert(engine, ts_multi_2, 'ts_multi_simple', 'test')
    ts = tsh.get(engine, 'ts_multi_simple')
839
840
841
842

    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
843
844
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              2.0
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
""", pd.DataFrame(ts))

    # bigger ts
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 4
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 4

    appdate_1 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values

    pubdate_1 = [pd.datetime(2015, 1, 21, 12, 0, 0)] * 4
    insertion_date_1 = [pd.datetime(2015, 1, 21, 12, 30, 0)] * 4

    multi = [
        np.concatenate([appdate_0, appdate_1]),
        np.array(pubdate_0 + pubdate_1),
        np.array(insertion_date_0 + insertion_date_1)
    ]

    ts_multi = pd.Series(range(8), index=multi)
    ts_multi.index.rename(['a', 'c', 'b'], inplace=True)

870
871
    tsh.insert(engine, ts_multi, 'ts_multi', 'test')
    ts = tsh.get(engine, 'ts_multi')
872
873
874
875

    assert_df("""
                                                    ts_multi
a          b                   c                            
876
877
878
879
880
881
882
883
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       5.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       6.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       7.0
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    """, pd.DataFrame(ts.sort_index()))
    # Note: the columnns are returned according to the alphabetic order

    appdate_2 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_2 = [pd.datetime(2015, 1, 31, 12, 0, 0)] * 4
    insertion_date_2 = [pd.datetime(2015, 1, 31, 12, 30, 0)] * 4

    multi_2 = [
        np.concatenate([appdate_1, appdate_2]),
        np.array(pubdate_1 + pubdate_2),
        np.array(insertion_date_1 + insertion_date_2)
    ]

    ts_multi_2 = pd.Series([4] * 8, index=multi_2)
    ts_multi_2.index.rename(['a', 'c', 'b'], inplace=True)

    # A second ts is inserted with some index in common with the first
    # one: appdate_1, pubdate_1,and insertion_date_1. The value is set
    # at 4, which matches the previous value of the "2015-01-01" point.

906
    diff = tsh.insert(engine, ts_multi_2, 'ts_multi', 'test')
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    assert_df("""
                                                    ts_multi
a          b                   c                            
2015-01-01 2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
        """, pd.DataFrame(diff.sort_index()))
    # the differential skips a value for "2015-01-01"
    # which does not change from the previous ts

921
    ts = tsh.get(engine, 'ts_multi')
922
923
924
    assert_df("""
                                                    ts_multi
a          b                   c                            
925
926
927
928
929
930
931
932
933
934
935
936
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
937
938
939
        """, pd.DataFrame(ts.sort_index()))

    # the result ts have now 3 values for each point in 'a'
940
941


942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
def test_multi_index_get_history(engine, tsh):
    appdate = pd.DatetimeIndex(
        start=datetime(2015, 1, 1),
        end=datetime(2015, 1, 2),
        freq='D'
    ).values
    forecast_date = [pd.Timestamp(2015, 1, 11, 12, 0, 0)] * 2
    multi = [
        appdate,
        np.array(forecast_date),
    ]

    ts_multi = pd.Series(range(2), index=multi)
    ts_multi.index.rename(['app_date', 'fc_date'], inplace=True)

    tsh.insert(engine, ts_multi, 'ts_mi', 'Babar',
               _insertion_date=pd.datetime(2015, 1, 11, 12, 30, 0))


    ts = tsh.get_history(engine, 'ts_mi')
    assert_df("""
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
""", ts)

    ts = tsh.get_history(engine, 'ts_mi', diffmode=True)

    assert_df("""
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
""", ts)

    # new forecast
    appdate = pd.DatetimeIndex(
        start=datetime(2015, 1, 1),
        end=datetime(2015, 1, 2),
        freq='D'
    ).values
    forecast_date = [pd.Timestamp(2015, 1, 11, 13, 0, 0)] * 2
    multi = [
        appdate,
        np.array(forecast_date),
    ]

    ts_multi = pd.Series((x+.1 for x in range(2)), index=multi)
    ts_multi.index.rename(['app_date', 'fc_date'], inplace=True)

    tsh.insert(engine, ts_multi, 'ts_mi', 'Babar',
               _insertion_date=pd.datetime(2015, 1, 11, 13, 30, 0))

    ts = tsh.get_history(engine, 'ts_mi')
    assert_df("""
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
2015-01-11 13:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                                 2015-01-11 13:00:00    0.1
                     2015-01-02  2015-01-11 12:00:00    1.0
                                 2015-01-11 13:00:00    1.1
""", ts)

    ts = tsh.get_history(engine, 'ts_mi', diffmode=True)
    assert_df("""
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
2015-01-11 13:30:00  2015-01-01  2015-01-11 13:00:00    0.1
                     2015-01-02  2015-01-11 13:00:00    1.1
""", ts)
1013
1014


1015
def test_get_history(engine, tsh):
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
    for numserie in (1, 2, 3):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.fr',
                                  _insertion_date=datetime(2017, 2, numserie)):
                tsh.insert(cn, genserie(datetime(2017, 1, 1), 'D', numserie), 'smallserie')

    ts = tsh.get(engine, 'smallserie')
    assert_df("""
2017-01-01    0.0
2017-01-02    1.0
2017-01-03    2.0
""", ts)

    logs = tsh.log(engine, names=['smallserie'])
    assert [
        {'author': 'aurelien.campeas@pythonian.fr',
1032
         'meta': {},
1033
1034
1035
1036
         'date': datetime(2017, 2, 1, 0, 0),
         'names': ['smallserie']
        },
        {'author': 'aurelien.campeas@pythonian.fr',
1037
         'meta': {},
1038
1039
1040
1041
         'date': datetime(2017, 2, 2, 0, 0),
         'names': ['smallserie']
        },
        {'author': 'aurelien.campeas@pythonian.fr',
1042
         'meta': {},
1043
1044
1045
1046
1047
1048
         'date': datetime(2017, 2, 3, 0, 0),
         'names': ['smallserie']
        }
    ] == [{k: v for k, v in log.items() if k != 'rev'}
          for log in logs]
    histts = tsh.get_history(engine, 'smallserie')
1049
    assert histts.name == 'smallserie'
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
                2017-01-03    2.0
""", histts)

1061
1062
1063
1064
1065
1066
1067
1068
    diffs = tsh.get_history(engine, 'smallserie', diffmode=True)
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-02    1.0
2017-02-03      2017-01-03    2.0
""", diffs)

1069
    for idate in histts.index.get_level_values('insertion_date').unique():
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.f',
                                  _insertion_date=idate):
                tsh.insert(cn, histts[idate], 'smallserie2')

    # this is perfectly round-tripable
    assert (tsh.get(engine, 'smallserie2') == ts).all()
    assert (tsh.get_history(engine, 'smallserie2') == histts).all()

    # get history ranges
    tsa = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
                2017-01-03    2.0
""", tsa)

    tsb = tsh.get_history(engine, 'smallserie',
                          to_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
""", tsb)

    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2017, 2, 2),
                          to_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
""", tsc)

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2017, 2, 4),
                          to_insertion_date=datetime(2017, 2, 4))
    assert tsc is None

    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2016, 2, 1),
                          to_insertion_date=datetime(2017, 2, 2))
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
""", tsc)

    tsc = tsh.get_history(engine, 'smallserie',
                          from_insertion_date=datetime(2016, 2, 1),
                          to_insertion_date=datetime(2016, 12, 31))
    assert tsc is None

1129
1130
1131
1132
1133
1134
1135
1136