test_tsio.py 48 KB
Newer Older
1
# coding: utf-8
2
from datetime import datetime, timedelta
3
from time import time
4
from dateutil import parser
5
import calendar
6

Aurélien Campéas's avatar
Aurélien Campéas committed
7
from pathlib2 import Path
8
9
import pandas as pd
import numpy as np
10
import pytest
11
from mock import patch
12

13
from tshistory.testutil import assert_group_equals, genserie, assert_df
14

15
DATADIR = Path(__file__).parent / 'data'
16

Aurélien Campéas's avatar
Aurélien Campéas committed
17

18
def test_changeset(engine, tsh):
19
    index = pd.date_range(start=datetime(2017, 1, 1), freq='D', periods=3)
20
    data = [1., 2., 3.]
21

22
23
    with patch('tshistory.tsio.datetime') as mock_date:
        mock_date.now.return_value = datetime(2020, 1, 1)
24
        with engine.connect() as cn:
25
            with tsh.newchangeset(cn, 'babar'):
26
                tsh.insert(cn, pd.Series(data, index=index), 'ts_values', author='WONTBEUSED')
27
                tsh.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
28

29
30
31
        # bogus author won't show up
        assert tsh.log(engine)[0]['author'] == 'babar'

32
33
        g = tsh.get_group(engine, 'ts_values')
        g2 = tsh.get_group(engine, 'ts_othervalues')
34
        assert_group_equals(g, g2)
35

36
        with pytest.raises(AssertionError):
37
            tsh.insert(engine, pd.Series([2, 3, 4], index=index), 'ts_values')
38

39
        with engine.connect() as cn:
40
            data.append(data.pop(0))
41
42
            with tsh.newchangeset(cn, 'celeste'):
                tsh.insert(cn, pd.Series(data, index=index), 'ts_values')
43
                # below should be a noop
44
                tsh.insert(cn, pd.Series(['a', 'b', 'c'], index=index), 'ts_othervalues')
45

46
    g = tsh.get_group(engine, 'ts_values')
47
48
    assert ['ts_values'] == list(g.keys())

49
    assert_df("""
50
51
52
2017-01-01    2.0
2017-01-02    3.0
2017-01-03    1.0
53
""", tsh.get(engine, 'ts_values'))
54

55
    assert_df("""
56
57
58
2017-01-01    a
2017-01-02    b
2017-01-03    c
59
""", tsh.get(engine, 'ts_othervalues'))
60

61
    log = tsh.log(engine, names=['ts_values', 'ts_othervalues'])
62
63
64
65
    assert [
        {'author': 'babar',
         'rev': 1,
         'date': datetime(2020, 1, 1, 0, 0),
66
         'meta': {},
67
68
69
         'names': ['ts_values', 'ts_othervalues']},
        {'author': 'celeste',
         'rev': 2,
70
         'meta': {},
71
72
73
74
         'date': datetime(2020, 1, 1, 0, 0),
         'names': ['ts_values']}
    ] == log

75
    log = tsh.log(engine, names=['ts_othervalues'])
76
77
    assert len(log) == 1
    assert log[0]['rev'] == 1
78
    assert log[0]['names'] == ['ts_values', 'ts_othervalues']
79

80
    log = tsh.log(engine, fromrev=2)
81
82
    assert len(log) == 1

83
    log = tsh.log(engine, torev=1)
84
85
    assert len(log) == 1

86
    info = tsh.info(engine)
87
88
89
90
91
92
    assert {
        'changeset count': 2,
        'serie names': ['ts_othervalues', 'ts_values'],
        'series count': 2
    } == info

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def test_strip(engine, tsh):
    for i in range(1, 5):
        pubdate = datetime(2017, 1, i)
        ts = genserie(datetime(2017, 1, 10), 'H', 1 + i)
        with tsh.newchangeset(engine, 'babar', _insertion_date=pubdate):
            tsh.insert(engine, ts, 'xserie')
        # also insert something completely unrelated
        tsh.insert(engine, genserie(datetime(2018, 1, 1), 'D', 1 + i), 'yserie', 'celeste')

    csida = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3))
    assert csida is not None
    csidb = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3, 1), mode='before')
    csidc = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3, 1), mode='after')
    assert csidb < csida < csidc

    log = tsh.log(engine, names=['xserie', 'yserie'])
    assert [(idx, l['author']) for idx, l in enumerate(log, start=1)
    ] == [
        (1, 'babar'),
        (2, 'celeste'),
        (3, 'babar'),
        (4, 'celeste'),
        (5, 'babar'),
        (6, 'celeste'),
        (7, 'babar'),
        (8, 'celeste')
    ]

    h = tsh.get_history(engine, 'xserie')
    assert_df("""
insertion_date  value_date         
2017-01-01      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
2017-01-02      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
2017-01-03      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
                2017-01-10 03:00:00    3.0
2017-01-04      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
                2017-01-10 03:00:00    3.0
                2017-01-10 04:00:00    4.0
""", h)

    csid = tsh.changeset_at(engine, 'xserie', datetime(2017, 1, 3))
    with engine.connect() as cn:
        tsh.strip(cn, 'xserie', csid)

    assert_df("""
insertion_date  value_date         
2017-01-01      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
2017-01-02      2017-01-10 00:00:00    0.0
                2017-01-10 01:00:00    1.0
                2017-01-10 02:00:00    2.0
""", tsh.get_history(engine, 'xserie'))

    assert_df("""
2017-01-10 00:00:00    0.0
2017-01-10 01:00:00    1.0
2017-01-10 02:00:00    2.0
""", tsh.get(engine, 'xserie'))

    # internal structure is ok
    with engine.connect() as cn:
        cn.execute('set search_path to "{}.timeserie"'.format(tsh.namespace))
        df = pd.read_sql("select id, diff, snapshot from xserie order by id", cn)
        for attr in ('diff', 'snapshot'):
            df[attr] = df[attr].apply(lambda x: False if x is None else True)

    assert_df("""
id   diff  snapshot
0   1  False      True
1   2   True      True
""", df)

    log = tsh.log(engine, names=['xserie', 'yserie'])
    # 5 and 7 have disappeared
    assert [l['author'] for l in log
    ] == ['babar', 'celeste', 'babar', 'celeste', 'celeste', 'celeste']

    log = tsh.log(engine, stripped=True, names=['xserie', 'yserie'])
    assert [list(l['meta'].values())[0][:-1] + 'X' for l in log if l['meta']
    ] == [
        'got stripped from X',
        'got stripped from X'
    ]


186
def test_tstamp_roundtrip(engine, tsh):
187
188
    ts = genserie(datetime(2017, 10, 28, 23),
                  'H', 4, tz='UTC')
189
190
191
192
193
194
195
196
197
198
    ts.index = ts.index.tz_convert('Europe/Paris')

    assert_df("""
2017-10-29 01:00:00+02:00    0
2017-10-29 02:00:00+02:00    1
2017-10-29 02:00:00+01:00    2
2017-10-29 03:00:00+01:00    3
Freq: H
    """, ts)

199
200
    tsh.insert(engine, ts, 'tztest', 'Babar')
    back = tsh.get(engine, 'tztest')
201
202
203

    # though un localized we understand it's been normalized to utc
    assert_df("""
204
205
206
207
2017-10-28 23:00:00+00:00    0.0
2017-10-29 00:00:00+00:00    1.0
2017-10-29 01:00:00+00:00    2.0
2017-10-29 02:00:00+00:00    3.0
208
209
210
""", back)

    assert (ts.index == back.index).all()
211
    assert str(back.index.dtype) == 'datetime64[ns, UTC]'
212
213


214
215
def test_multi_index_aware(engine, tsh):
    ts_multi_aware = genserie(
216
217
218
        start=pd.Timestamp(
            2017, 10, 28, 23
        ).tz_localize('UTC').tz_convert('Europe/Paris'),
219
220
        freq=['15T', '30T', '60T'],
        repeat=10,
221
        tz='Europe/Paris',
222
223
224
225
        name='ts_multi_aware',
    )
    ts_multi_aware.index.rename(['a', 'b', 'c'], inplace=True)

226
227
228
229
230
231
232
233
234
235
236
237
238
239
    assert_df("""
a                          b                          c                        
2017-10-29 01:00:00+02:00  2017-10-29 01:00:00+02:00  2017-10-29 01:00:00+02:00    0
2017-10-29 01:15:00+02:00  2017-10-29 01:30:00+02:00  2017-10-29 02:00:00+02:00    1
2017-10-29 01:30:00+02:00  2017-10-29 02:00:00+02:00  2017-10-29 02:00:00+01:00    2
2017-10-29 01:45:00+02:00  2017-10-29 02:30:00+02:00  2017-10-29 03:00:00+01:00    3
2017-10-29 02:00:00+02:00  2017-10-29 02:00:00+01:00  2017-10-29 04:00:00+01:00    4
2017-10-29 02:15:00+02:00  2017-10-29 02:30:00+01:00  2017-10-29 05:00:00+01:00    5
2017-10-29 02:30:00+02:00  2017-10-29 03:00:00+01:00  2017-10-29 06:00:00+01:00    6
2017-10-29 02:45:00+02:00  2017-10-29 03:30:00+01:00  2017-10-29 07:00:00+01:00    7
2017-10-29 02:00:00+01:00  2017-10-29 04:00:00+01:00  2017-10-29 08:00:00+01:00    8
2017-10-29 02:15:00+01:00  2017-10-29 04:30:00+01:00  2017-10-29 09:00:00+01:00    9
""", ts_multi_aware)

240
241
242
243
    tsh.insert(engine, ts_multi_aware, 'ts_multi_aware', 'test')
    ts_aware = tsh.get(engine, 'ts_multi_aware')

    assert_df("""
244
ts_multi_aware
245
a                         b                         c                                        
246
247
248
249
250
251
252
253
254
255
2017-10-28 23:00:00+00:00 2017-10-28 23:00:00+00:00 2017-10-28 23:00:00+00:00             0.0
2017-10-28 23:15:00+00:00 2017-10-28 23:30:00+00:00 2017-10-29 00:00:00+00:00             1.0
2017-10-28 23:30:00+00:00 2017-10-29 00:00:00+00:00 2017-10-29 01:00:00+00:00             2.0
2017-10-28 23:45:00+00:00 2017-10-29 00:30:00+00:00 2017-10-29 02:00:00+00:00             3.0
2017-10-29 00:00:00+00:00 2017-10-29 01:00:00+00:00 2017-10-29 03:00:00+00:00             4.0
2017-10-29 00:15:00+00:00 2017-10-29 01:30:00+00:00 2017-10-29 04:00:00+00:00             5.0
2017-10-29 00:30:00+00:00 2017-10-29 02:00:00+00:00 2017-10-29 05:00:00+00:00             6.0
2017-10-29 00:45:00+00:00 2017-10-29 02:30:00+00:00 2017-10-29 06:00:00+00:00             7.0
2017-10-29 01:00:00+00:00 2017-10-29 03:00:00+00:00 2017-10-29 07:00:00+00:00             8.0
2017-10-29 01:15:00+00:00 2017-10-29 03:30:00+00:00 2017-10-29 08:00:00+00:00             9.0
256
257
258
    """, pd.DataFrame(ts_aware.sort_index()))
    # Note: the columnns are returned according to the alphabetic order

259
260
261
262
263
264
265
266
267
268
269
270
    ts = tsh.get(engine, 'ts_multi_aware',
                 from_value_date=pd.Timestamp(2017, 10, 29, 0).tz_localize('UTC'),
                 to_value_date=pd.Timestamp(2017, 10, 29, 1).tz_localize('UTC'))
    assert_df("""
a                          b                          c                        
2017-10-29 00:00:00+00:00  2017-10-29 01:00:00+00:00  2017-10-29 03:00:00+00:00    4.0
2017-10-29 00:15:00+00:00  2017-10-29 01:30:00+00:00  2017-10-29 04:00:00+00:00    5.0
2017-10-29 00:30:00+00:00  2017-10-29 02:00:00+00:00  2017-10-29 05:00:00+00:00    6.0
2017-10-29 00:45:00+00:00  2017-10-29 02:30:00+00:00  2017-10-29 06:00:00+00:00    7.0
2017-10-29 01:00:00+00:00  2017-10-29 03:00:00+00:00  2017-10-29 07:00:00+00:00    8.0
    """, ts)

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    ts = genserie(datetime(2010, 1, 1), 'D', 10)
    with pytest.raises(Exception) as err:
        tsh.insert(engine, ts, 'ts_multi_aware', 'test')
    assert err.value.args[0] == 'Incompatible index types'

    ts = genserie(
        start=pd.Timestamp(
            2017, 10, 28, 23
        ).tz_localize('UTC').tz_convert('Europe/Paris'),
        freq=['15T', '30T'],
        repeat=10,
        tz='Europe/Paris',
        name='ts_multi_aware',
    )
    ts.index.rename(['a', 'b'], inplace=True)

    with pytest.raises(Exception) as err:
        tsh.insert(engine, ts, 'ts_multi_aware', 'test')
    assert err.value.args[0] == "Incompatible multi indexes: ['a', 'b', 'c'] vs ['a', 'b']"

291

292
def test_differential(engine, tsh):
293
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10)
294
    tsh.insert(engine, ts_begin, 'ts_test', 'test')
295

296
297
    assert tsh.exists(engine, 'ts_test')
    assert not tsh.exists(engine, 'this_does_not_exist')
298

299
    assert_df("""
300
301
302
303
304
305
306
307
308
309
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
310
""", tsh.get(engine, 'ts_test'))
311
312

    # we should detect the emission of a message
313
    tsh.insert(engine, ts_begin, 'ts_test', 'babar')
314

315
    assert_df("""
316
317
318
319
320
321
322
323
324
325
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    3.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
326
""", tsh.get(engine, 'ts_test'))
327
328
329
330

    ts_slight_variation = ts_begin.copy()
    ts_slight_variation.iloc[3] = 0
    ts_slight_variation.iloc[6] = 0
331
    tsh.insert(engine, ts_slight_variation, 'ts_test', 'celeste')
332

333
    assert_df("""
334
335
336
337
338
339
340
341
342
343
2010-01-01    0.0
2010-01-02    1.0
2010-01-03    2.0
2010-01-04    0.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    0.0
2010-01-08    7.0
2010-01-09    8.0
2010-01-10    9.0
344
""", tsh.get(engine, 'ts_test'))
345

346
    ts_longer = genserie(datetime(2010, 1, 3), 'D', 15)
347
348
349
350
    ts_longer.iloc[1] = 2.48
    ts_longer.iloc[3] = 3.14
    ts_longer.iloc[5] = ts_begin.iloc[7]

351
    tsh.insert(engine, ts_longer, 'ts_test', 'test')
352

353
    assert_df("""
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
2010-01-01     0.00
2010-01-02     1.00
2010-01-03     0.00
2010-01-04     2.48
2010-01-05     2.00
2010-01-06     3.14
2010-01-07     4.00
2010-01-08     7.00
2010-01-09     6.00
2010-01-10     7.00
2010-01-11     8.00
2010-01-12     9.00
2010-01-13    10.00
2010-01-14    11.00
2010-01-15    12.00
2010-01-16    13.00
2010-01-17    14.00
371
""", tsh.get(engine, 'ts_test'))
372
373

    # start testing manual overrides
374
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 5, initval=[2])
375
    ts_begin.loc['2010-01-04'] = -1
376
    tsh.insert(engine, ts_begin, 'ts_mixte', 'test')
377
378

    # -1 represents bogus upstream data
379
    assert_df("""
380
381
382
383
384
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
385
""", tsh.get(engine, 'ts_mixte'))
386
387

    # refresh all the period + 1 extra data point
388
    ts_more = genserie(datetime(2010, 1, 2), 'D', 5, [2])
389
    ts_more.loc['2010-01-04'] = -1
390
    tsh.insert(engine, ts_more, 'ts_mixte', 'test')
391

392
    assert_df("""
393
394
395
396
397
398
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
399
""", tsh.get(engine, 'ts_mixte'))
400
401

    # just append an extra data point
402
403
    # with no intersection with the previous ts
    ts_one_more = genserie(datetime(2010, 1, 7), 'D', 1, [3])
404
    tsh.insert(engine, ts_one_more, 'ts_mixte', 'test')
405

406
    assert_df("""
407
408
409
410
411
412
413
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
414
""", tsh.get(engine, 'ts_mixte'))
415

416
    with engine.connect() as cn:
417
        cn.execute('set search_path to "{0}.timeserie", {0}, public'.format(tsh.namespace))
418
419
420
        hist = pd.read_sql('select id, parent from ts_test order by id',
                           cn)
        assert_df("""
421
422
423
424
   id  parent
0   1     NaN
1   2     1.0
2   3     2.0
425
""", hist)
426

427
428
429
        hist = pd.read_sql('select id, parent from ts_mixte order by id',
                           cn)
        assert_df("""
430
431
432
433
   id  parent
0   1     NaN
1   2     1.0
2   3     2.0
434
""", hist)
435

436
437
438
        allts = pd.read_sql("select name, table_name from registry "
                            "where name in ('ts_test', 'ts_mixte')",
                            cn)
439

440
441
        assert_df("""
name              table_name
442
443
444
0   ts_test   {0}.timeserie.ts_test
1  ts_mixte  {0}.timeserie.ts_mixte
""".format(tsh.namespace), allts)
445

446
        assert_df("""
447
448
449
450
451
452
453
2010-01-01    2.0
2010-01-02    2.0
2010-01-03    2.0
2010-01-04   -1.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    3.0
454
""", tsh.get(cn, 'ts_mixte',
455
             revision_date=datetime.now()))
456
457


458
def test_bad_import(engine, tsh):
459
    # the data were parsed as date by pd.read_json()
Aurélien Campéas's avatar
Aurélien Campéas committed
460
    df_result = pd.read_csv(str(DATADIR / 'test_data.csv'))
461
462
463
    df_result['Gas Day'] = df_result['Gas Day'].apply(parser.parse, dayfirst=True, yearfirst=False)
    df_result.set_index('Gas Day', inplace=True)
    ts = df_result['SC']
464

465
466
    tsh.insert(engine, ts, 'SND_SC', 'test')
    result = tsh.get(engine, 'SND_SC')
467
    assert result.dtype == 'float64'
468
469
470

    # insertion of empty ts
    ts = pd.Series(name='truc', dtype='object')
471
472
    tsh.insert(engine, ts, 'empty_ts', 'test')
    assert tsh.get(engine, 'empty_ts') is None
473
474
475

    # nan in ts
    # all na
476
    ts = genserie(datetime(2010, 1, 10), 'D', 10, [np.nan], name='truc')
477
478
    tsh.insert(engine, ts, 'test_nan', 'test')
    assert tsh.get(engine, 'test_nan') is None
479
480
481
482
483

    # mixe na
    ts = pd.Series([np.nan] * 5 + [3] * 5,
                   index=pd.date_range(start=datetime(2010, 1, 10),
                                       freq='D', periods=10), name='truc')
484
485
    tsh.insert(engine, ts, 'test_nan', 'test')
    result = tsh.get(engine, 'test_nan')
486

487
488
    tsh.insert(engine, ts, 'test_nan', 'test')
    result = tsh.get(engine, 'test_nan')
489
    assert_df("""
490
491
492
493
494
2010-01-15    3.0
2010-01-16    3.0
2010-01-17    3.0
2010-01-18    3.0
2010-01-19    3.0
495
""", result)
496
497
498

    # get_ts with name not in database

499
    tsh.get(engine, 'inexisting_name', 'test')
500
501


502
def test_revision_date(engine, tsh):
503
504
505
506
507
508
509
510
511
512
513
    # we prepare a good joke for the end of the test
    ival = tsh._snapshot_interval
    tsh._snapshot_interval = 3

    for i in range(1, 5):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'test',
                                  _insertion_date=datetime(2016, 1, i)):
                tsh.insert(cn, genserie(datetime(2017, 1, i), 'D', 3, [i]), 'revdate')

    # end of prologue, now some real meat
514
515
516
517
518
519
520
    idate0 = datetime(2015, 1, 1, 0, 0, 0)
    with tsh.newchangeset(engine, 'test', _insertion_date=idate0):

        ts = genserie(datetime(2010, 1, 4), 'D', 4, [0], name='truc')
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate0 == tsh.latest_insertion_date(engine, 'ts_through_time')

521
    idate1 = datetime(2015, 1, 1, 15, 43, 23)
522
    with tsh.newchangeset(engine, 'test', _insertion_date=idate1):
523

524
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [1], name='truc')
525
526
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate1 == tsh.latest_insertion_date(engine, 'ts_through_time')
527

528
    idate2 = datetime(2015, 1, 2, 15, 43, 23)
529
    with tsh.newchangeset(engine, 'test', _insertion_date=idate2):
530

531
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [2], name='truc')
532
533
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate2 == tsh.latest_insertion_date(engine, 'ts_through_time')
534

535
    idate3 = datetime(2015, 1, 3, 15, 43, 23)
536
    with tsh.newchangeset(engine, 'test', _insertion_date=idate3):
537

538
        ts = genserie(datetime(2010, 1, 4), 'D', 4, [3], name='truc')
539
540
        tsh.insert(engine, ts, 'ts_through_time')
        assert idate3 == tsh.latest_insertion_date(engine, 'ts_through_time')
541

542
    ts = tsh.get(engine, 'ts_through_time')
543

544
    assert_df("""
545
546
547
548
2010-01-04    3.0
2010-01-05    3.0
2010-01-06    3.0
2010-01-07    3.0
549
""", ts)
550

551
    ts = tsh.get(engine, 'ts_through_time',
Aurélien Campéas's avatar
Aurélien Campéas committed
552
                 revision_date=datetime(2015, 1, 2, 18, 43, 23))
553

554
    assert_df("""
555
556
557
558
2010-01-04    2.0
2010-01-05    2.0
2010-01-06    2.0
2010-01-07    2.0
559
""", ts)
560

561
    ts = tsh.get(engine, 'ts_through_time',
562
                 revision_date=datetime(2015, 1, 1, 18, 43, 23))
563

564
    assert_df("""
565
566
567
568
2010-01-04    1.0
2010-01-05    1.0
2010-01-06    1.0
2010-01-07    1.0
569
""", ts)
570

571
    ts = tsh.get(engine, 'ts_through_time',
572
                 revision_date=datetime(2014, 1, 1, 18, 43, 23))
573
574
575

    assert ts is None

576
577
578
579
580
581
582
583
584
585
    # epilogue: back to the revdate issue
    assert_df("""
2017-01-01    1.0
2017-01-02    2.0
2017-01-03    3.0
2017-01-04    4.0
2017-01-05    4.0
2017-01-06    4.0
""", tsh.get(engine, 'revdate'))

586
    oldstate = tsh.get(engine, 'revdate', revision_date=datetime(2016, 1, 2))
587
588
589
    assert_df("""
2017-01-01    1.0
2017-01-02    2.0
590
591
592
2017-01-03    2.0
2017-01-04    2.0
""", oldstate)
593
594
595

    tsh._snapshot_interval = ival

596

597
def test_snapshots(engine, tsh):
598
    baseinterval = tsh._snapshot_interval
599
    tsh._snapshot_interval = 4
600

601
    with engine.connect() as cn:
602
        for tscount in range(1, 11):
603
            ts = genserie(datetime(2015, 1, 1), 'D', tscount, [1])
604
            diff = tsh.insert(cn, ts, 'growing', 'babar')
605
606
            assert diff.index[0] == diff.index[-1] == ts.index[-1]

607
    diff = tsh.insert(engine, ts, 'growing', 'babar')
608
    assert diff is None
609

610
    with engine.connect() as cn:
611
        cn.execute('set search_path to "{}.timeserie"'.format(tsh.namespace))
612
613
614
        df = pd.read_sql("select id from growing where snapshot is not null",
                         cn)
        assert_df("""
615
616
   id
0   1
617
618
619
1   4
2   8
3  10
620
""", df)
621

622
623
        ts = tsh.get(cn, 'growing')
        assert_df("""
624
625
626
627
628
629
630
631
632
633
2015-01-01    1.0
2015-01-02    1.0
2015-01-03    1.0
2015-01-04    1.0
2015-01-05    1.0
2015-01-06    1.0
2015-01-07    1.0
2015-01-08    1.0
2015-01-09    1.0
2015-01-10    1.0
634
""", ts)
635

636
637
638
        df = pd.read_sql("select id, diff, snapshot from growing order by id", cn)
        for attr in ('diff', 'snapshot'):
            df[attr] = df[attr].apply(lambda x: 0 if x is None else len(x))
639

640
        assert_df("""
641
642
643
644
645
646
647
648
649
650
651
id  diff  snapshot
0   1     0        35
1   2    36         0
2   3    36         0
3   4    36        47
4   5    36         0
5   6    36         0
6   7    36         0
7   8    36        59
8   9    36         0
9  10    36        67
652
""", df)
653

654
655
    table = tsh._get_ts_table(engine, 'growing')
    snapid, snap = tsh._find_snapshot(engine, table, ())
656
657
    assert snapid == 10
    assert (ts == snap).all()
658
    tsh._snapshot_interval = baseinterval
659
660


661
def test_deletion(engine, tsh):
662
663
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_begin.iloc[-1] = np.nan
664
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
665

666
    ts = tsh._build_snapshot_upto(engine, tsh._get_ts_table(engine, 'ts_del'))
667
    assert ts.iloc[-1] == 9.0
668

669
    ts_begin.iloc[0] = np.nan
670
    ts_begin.iloc[3] = np.nan
671

672
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
673

674
    assert_df("""
675
676
677
678
679
680
681
2010-01-02    1.0
2010-01-03    2.0
2010-01-05    4.0
2010-01-06    5.0
2010-01-07    6.0
2010-01-08    7.0
2010-01-09    8.0
682
2010-01-10    9.0
683
""", tsh.get(engine, 'ts_del'))
684

685
    ts2 = tsh.get(engine, 'ts_del',
686
687
                 # force snapshot reconstruction feature
                 revision_date=datetime(2038, 1, 1))
688
    assert (tsh.get(engine, 'ts_del') == ts2).all()
689

690
691
692
    ts_begin.iloc[0] = 42
    ts_begin.iloc[3] = 23

693
    tsh.insert(engine, ts_begin, 'ts_del', 'test')
694

695
    assert_df("""
696
697
698
699
700
701
702
703
704
2010-01-01    42.0
2010-01-02     1.0
2010-01-03     2.0
2010-01-04    23.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
705
2010-01-10     9.0
706
""", tsh.get(engine, 'ts_del'))
707
708
709

    # now with string!

710
    ts_string = genserie(datetime(2010, 1, 1), 'D', 10, ['machin'])
711
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
712
713
714
715

    ts_string[4] = None
    ts_string[5] = None

716
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
717
    assert_df("""
718
719
720
721
722
723
724
725
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-07    machin
2010-01-08    machin
2010-01-09    machin
2010-01-10    machin
726
""", tsh.get(engine, 'ts_string_del'))
727
728
729
730

    ts_string[4] = 'truc'
    ts_string[6] = 'truc'

731
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
732
    assert_df("""
733
734
735
736
737
738
739
740
2010-01-01    machin
2010-01-02    machin
2010-01-03    machin
2010-01-04    machin
2010-01-05      truc
2010-01-07      truc
2010-01-08    machin
2010-01-09    machin
741
2010-01-10    machin
742
""", tsh.get(engine, 'ts_string_del'))
743

744
    ts_string[ts_string.index] = np.nan
745
    tsh.insert(engine, ts_string, 'ts_string_del', 'test')
746

747
    erased = tsh.get(engine, 'ts_string_del')
748
749
    assert len(erased) == 0

750
751
    # first insertion with only nan

752
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 10, [np.nan])
753
    tsh.insert(engine, ts_begin, 'ts_null', 'test')
754

755
    assert tsh.get(engine, 'ts_null') is None
756

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    # exhibit issue with nans handling
    ts_repushed = genserie(datetime(2010, 1, 1), 'D', 11)
    ts_repushed[0:3] = np.nan

    assert_df("""
2010-01-01     NaN
2010-01-02     NaN
2010-01-03     NaN
2010-01-04     3.0
2010-01-05     4.0
2010-01-06     5.0
2010-01-07     6.0
2010-01-08     7.0
2010-01-09     8.0
2010-01-10     9.0
2010-01-11    10.0
Freq: D
""", ts_repushed)

776
777
    tsh.insert(engine, ts_repushed, 'ts_repushed', 'test')
    diff = tsh.insert(engine, ts_repushed, 'ts_repushed', 'test')
778
779
    assert diff is None

780
    # there is no difference
781
    assert 0 == len(tsh._compute_diff(ts_repushed, ts_repushed))
782
783
784
785
786

    ts_add = genserie(datetime(2010, 1, 1), 'D', 15)
    ts_add.iloc[0] = np.nan
    ts_add.iloc[13:] = np.nan
    ts_add.iloc[8] = np.nan
787
    diff = tsh._compute_diff(ts_repushed, ts_add)
788
789
790
791
792
793

    assert_df("""
2010-01-02     1.0
2010-01-03     2.0
2010-01-09     NaN
2010-01-12    11.0
794
2010-01-13    12.0""", diff.sort_index())
795
796
797
798
    # value on nan => value
    # nan on value => nan
    # nan on nan => Nothing
    # nan on nothing=> Nothing
799

Aurélien Campéas's avatar
Aurélien Campéas committed
800
    # full erasing
801
802
    # numeric
    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4)
803
    tsh.insert(engine, ts_begin, 'ts_full_del', 'test')
804

Aurélien Campéas's avatar
Aurélien Campéas committed
805
    ts_begin.iloc[:] = np.nan
806
    tsh.insert(engine, ts_begin, 'ts_full_del', 'test')
807
808

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4)
809
    tsh.insert(engine, ts_end, 'ts_full_del', 'test')
810
811
812
813

    # string

    ts_begin = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
814
    tsh.insert(engine, ts_begin, 'ts_full_del_str', 'test')
815
816

    ts_begin.iloc[:] = np.nan
817
    tsh.insert(engine, ts_begin, 'ts_full_del_str', 'test')
818
819

    ts_end = genserie(datetime(2010, 1, 1), 'D', 4, ['text'])
820
    tsh.insert(engine, ts_end, 'ts_full_del_str', 'test')
821

Aurélien Campéas's avatar
Aurélien Campéas committed
822

823
def test_multi_index(engine, tsh):
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 2),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 2
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 2

    multi = [
        appdate_0,
        np.array(pubdate_0),
        np.array(insertion_date_0)
    ]

    ts_multi = pd.Series(range(2), index=multi)
    ts_multi.index.rename(['b', 'c', 'a'], inplace=True)

839
    tsh.insert(engine, ts_multi, 'ts_multi_simple', 'test')
840

841
    ts = tsh.get(engine, 'ts_multi_simple')
842
843
844
    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
845
846
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              1.0
847
848
""", pd.DataFrame(ts))

849
    diff = tsh.insert(engine, ts_multi, 'ts_multi_simple', 'test')
850
851
852
853
854
    assert diff is None

    ts_multi_2 = pd.Series([0, 2], index=multi)
    ts_multi_2.index.rename(['b', 'c', 'a'], inplace=True)

855
856
    tsh.insert(engine, ts_multi_2, 'ts_multi_simple', 'test')
    ts = tsh.get(engine, 'ts_multi_simple')
857
858
859
860

    assert_df("""
                                                    ts_multi_simple
a                   b          c                                   
861
862
2015-01-11 12:30:00 2015-01-01 2015-01-11 12:00:00              0.0
                    2015-01-02 2015-01-11 12:00:00              2.0
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
""", pd.DataFrame(ts))

    # bigger ts
    appdate_0 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_0 = [pd.datetime(2015, 1, 11, 12, 0, 0)] * 4
    insertion_date_0 = [pd.datetime(2015, 1, 11, 12, 30, 0)] * 4

    appdate_1 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values

    pubdate_1 = [pd.datetime(2015, 1, 21, 12, 0, 0)] * 4
    insertion_date_1 = [pd.datetime(2015, 1, 21, 12, 30, 0)] * 4

    multi = [
        np.concatenate([appdate_0, appdate_1]),
        np.array(pubdate_0 + pubdate_1),
        np.array(insertion_date_0 + insertion_date_1)
    ]

    ts_multi = pd.Series(range(8), index=multi)
    ts_multi.index.rename(['a', 'c', 'b'], inplace=True)

888
889
    tsh.insert(engine, ts_multi, 'ts_multi', 'test')
    ts = tsh.get(engine, 'ts_multi')
890
891
892
893

    assert_df("""
                                                    ts_multi
a          b                   c                            
894
895
896
897
898
899
900
901
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       5.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       6.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       7.0
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
    """, pd.DataFrame(ts.sort_index()))
    # Note: the columnns are returned according to the alphabetic order

    appdate_2 = pd.DatetimeIndex(start=datetime(2015, 1, 1),
                                 end=datetime(2015, 1, 4),
                                 freq='D').values
    pubdate_2 = [pd.datetime(2015, 1, 31, 12, 0, 0)] * 4
    insertion_date_2 = [pd.datetime(2015, 1, 31, 12, 30, 0)] * 4

    multi_2 = [
        np.concatenate([appdate_1, appdate_2]),
        np.array(pubdate_1 + pubdate_2),
        np.array(insertion_date_1 + insertion_date_2)
    ]

    ts_multi_2 = pd.Series([4] * 8, index=multi_2)
    ts_multi_2.index.rename(['a', 'c', 'b'], inplace=True)

    # A second ts is inserted with some index in common with the first
    # one: appdate_1, pubdate_1,and insertion_date_1. The value is set
    # at 4, which matches the previous value of the "2015-01-01" point.

924
    diff = tsh.insert(engine, ts_multi_2, 'ts_multi', 'test')
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    assert_df("""
                                                    ts_multi
a          b                   c                            
2015-01-01 2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
        """, pd.DataFrame(diff.sort_index()))
    # the differential skips a value for "2015-01-01"
    # which does not change from the previous ts

939
    ts = tsh.get(engine, 'ts_multi')
940
941
942
    assert_df("""
                                                    ts_multi
a          b                   c                            
943
944
945
946
947
948
949
950
951
952
953
954
2015-01-01 2015-01-11 12:30:00 2015-01-11 12:00:00       0.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-02 2015-01-11 12:30:00 2015-01-11 12:00:00       1.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-03 2015-01-11 12:30:00 2015-01-11 12:00:00       2.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
2015-01-04 2015-01-11 12:30:00 2015-01-11 12:00:00       3.0
           2015-01-21 12:30:00 2015-01-21 12:00:00       4.0
           2015-01-31 12:30:00 2015-01-31 12:00:00       4.0
955
956
957
        """, pd.DataFrame(ts.sort_index()))

    # the result ts have now 3 values for each point in 'a'
958
959


960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
def test_multi_index_get_history(engine, tsh):
    appdate = pd.DatetimeIndex(
        start=datetime(2015, 1, 1),
        end=datetime(2015, 1, 2),
        freq='D'
    ).values
    forecast_date = [pd.Timestamp(2015, 1, 11, 12, 0, 0)] * 2
    multi = [
        appdate,
        np.array(forecast_date),
    ]

    ts_multi = pd.Series(range(2), index=multi)
    ts_multi.index.rename(['app_date', 'fc_date'], inplace=True)

    tsh.insert(engine, ts_multi, 'ts_mi', 'Babar',
               _insertion_date=pd.datetime(2015, 1, 11, 12, 30, 0))


    ts = tsh.get_history(engine, 'ts_mi')
    assert_df("""
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
""", ts)

    ts = tsh.get_history(engine, 'ts_mi', diffmode=True)

    assert_df("""
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
""", ts)

    # new forecast
    appdate = pd.DatetimeIndex(
        start=datetime(2015, 1, 1),
        end=datetime(2015, 1, 2),
        freq='D'
    ).values
    forecast_date = [pd.Timestamp(2015, 1, 11, 13, 0, 0)] * 2
    multi = [
        appdate,
        np.array(forecast_date),
    ]

    ts_multi = pd.Series((x+.1 for x in range(2)), index=multi)
    ts_multi.index.rename(['app_date', 'fc_date'], inplace=True)

    tsh.insert(engine, ts_multi, 'ts_mi', 'Babar',
               _insertion_date=pd.datetime(2015, 1, 11, 13, 30, 0))

    ts = tsh.get_history(engine, 'ts_mi')
    assert_df("""
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
2015-01-11 13:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                                 2015-01-11 13:00:00    0.1
                     2015-01-02  2015-01-11 12:00:00    1.0
                                 2015-01-11 13:00:00    1.1
""", ts)

    ts = tsh.get_history(engine, 'ts_mi', diffmode=True)
    assert_df("""
insertion_date       app_date    fc_date            
2015-01-11 12:30:00  2015-01-01  2015-01-11 12:00:00    0.0
                     2015-01-02  2015-01-11 12:00:00    1.0
2015-01-11 13:30:00  2015-01-01  2015-01-11 13:00:00    0.1
                     2015-01-02  2015-01-11 13:00:00    1.1
""", ts)
1031
1032


1033
def test_get_history(engine, tsh):
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
    for numserie in (1, 2, 3):
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.fr',
                                  _insertion_date=datetime(2017, 2, numserie)):
                tsh.insert(cn, genserie(datetime(2017, 1, 1), 'D', numserie), 'smallserie')

    ts = tsh.get(engine, 'smallserie')
    assert_df("""
2017-01-01    0.0
2017-01-02    1.0
2017-01-03    2.0
""", ts)

    logs = tsh.log(engine, names=['smallserie'])
    assert [
        {'author': 'aurelien.campeas@pythonian.fr',
1050
         'meta': {},
1051
1052
1053
1054
         'date': datetime(2017, 2, 1, 0, 0),
         'names': ['smallserie']
        },
        {'author': 'aurelien.campeas@pythonian.fr',
1055
         'meta': {},
1056
1057
1058
1059
         'date': datetime(2017, 2, 2, 0, 0),
         'names': ['smallserie']
        },
        {'author': 'aurelien.campeas@pythonian.fr',
1060
         'meta': {},
1061
1062
1063
1064
1065
1066
         'date': datetime(2017, 2, 3, 0, 0),
         'names': ['smallserie']
        }
    ] == [{k: v for k, v in log.items() if k != 'rev'}
          for log in logs]
    histts = tsh.get_history(engine, 'smallserie')
1067
    assert histts.name == 'smallserie'
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-01    0.0
                2017-01-02    1.0
2017-02-03      2017-01-01    0.0
                2017-01-02    1.0
                2017-01-03    2.0
""", histts)

1079
1080
1081
1082
1083
1084
1085
1086
    diffs = tsh.get_history(engine, 'smallserie', diffmode=True)
    assert_df("""
insertion_date  value_date
2017-02-01      2017-01-01    0.0
2017-02-02      2017-01-02    1.0
2017-02-03      2017-01-03    2.0
""", diffs)

1087
    for idate in histts.index.get_level_values('insertion_date').unique():
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        with engine.connect() as cn:
            with tsh.newchangeset(cn, 'aurelien.campeas@pythonian.f',
                                  _insertion_date=idate):
                tsh.insert(cn, histts[idate], 'smallserie2')

    # this is perfectly round-tripable
    assert (tsh.get(engine, 'smallserie2') == ts).all()